scholarly journals Two Models Based on Social Relations and SVD++ Method for Recommendation System

Author(s):  
Ali M. Ahmed Al Sabaawi ◽  
Hacer Karacan ◽  
Yusuf Erkan Yenice

Recently, Recommender Systems (RSs) have attracted many researchers whose goal is to improve the performance of the prediction accuracy of recommendation systems by alleviating RSs drawbacks. The most common limitations are sparsity and the cold-start problem. This article proposes two models to mitigate the effects of these limitations. The proposed models exploit five sources of information: rating information, which involves two sources, namely explicit and implicit, which can be extracted via users’ ratings, and two types of social relations: explicit and implicit relations, the last source is confidence values that are included in the first model only. The whole sources are combined into the Singular Value Decomposition plus (SVD++) method. First, to extract implicit relations, each non-friend pair of users, the Multi-Steps Resource Allocation (MSRA) method is adopted to compute the probability of being friends. If the probability has accepted value which exceeds a threshold, an implicit relationship will be created. Second, the similarity of explicit and implicit social relationships for each pair of users is computed. Regarding the first model, a confidence value between each pair of users is computed by dividing the number of common items by the total number of items which have also rated by the first user of this pair. The confidence values are combined with the similarity values to produce the weight factor. Furthermore, the weight factor, explicit, and implicit feedback information are integrated into the SVD++ method to compute the missing prediction values. Additionally, three standard datasets are utilized in this study, namely Last.Fm, Ciao, and FilmTrust, to evaluate our models. The experimental results have revealed that the proposed models outperformed state-of-the-art approaches in terms of accuracy.

2021 ◽  
Vol 25 (4) ◽  
pp. 1013-1029
Author(s):  
Zeeshan Zeeshan ◽  
Qurat ul Ain ◽  
Uzair Aslam Bhatti ◽  
Waqar Hussain Memon ◽  
Sajid Ali ◽  
...  

With the increase of online businesses, recommendation algorithms are being researched a lot to facilitate the process of using the existing information. Such multi-criteria recommendation (MCRS) helps a lot the end-users to attain the required results of interest having different selective criteria – such as combinations of implicit and explicit interest indicators in the form of ranking or rankings on different matched dimensions. Current approaches typically use label correlation, by assuming that the label correlations are shared by all objects. In real-world tasks, however, different sources of information have different features. Recommendation systems are more effective if being used for making a recommendation using multiple criteria of decisions by using the correlation between the features and items content (content-based approach) or finding a similar user rating to get targeted results (Collaborative filtering). To combine these two filterings in the multicriteria model, we proposed a features-based fb-knn multi-criteria hybrid recommendation algorithm approach for getting the recommendation of the items by using multicriteria features of items and integrating those with the correlated items found in similar datasets. Ranks were assigned to each decision and then weights were computed for each decision by using the standard deviation of items to get the nearest result. For evaluation, we tested the proposed algorithm on different datasets having multiple features of information. The results demonstrate that proposed fb-knn is efficient in different types of datasets.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2284
Author(s):  
Krzysztof Przystupa ◽  
Mykola Beshley ◽  
Olena Hordiichuk-Bublivska ◽  
Marian Kyryk ◽  
Halyna Beshley ◽  
...  

The problem of analyzing a big amount of user data to determine their preferences and, based on these data, to provide recommendations on new products is important. Depending on the correctness and timeliness of the recommendations, significant profits or losses can be obtained. The task of analyzing data on users of services of companies is carried out in special recommendation systems. However, with a large number of users, the data for processing become very big, which causes complexity in the work of recommendation systems. For efficient data analysis in commercial systems, the Singular Value Decomposition (SVD) method can perform intelligent analysis of information. With a large amount of processed information we proposed to use distributed systems. This approach allows reducing time of data processing and recommendations to users. For the experimental study, we implemented the distributed SVD method using Message Passing Interface, Hadoop and Spark technologies and obtained the results of reducing the time of data processing when using distributed systems compared to non-distributed ones.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 1470-1478
Author(s):  
R. Lavanya ◽  
Ebani Gogia ◽  
Nihal Rai

Recommendation system is a crucial part of offering items especially in services that offer streaming. For streaming movie services on OTT, RS are a helping hand for users in finding new movies for leisure. In this paper, we propose a machine learning an approach based on auto encoders to produce a CF system which outputs movie rating for a user based on a huge DB of ratings from other users. Utilising Movie Lens dataset, we explore the use of deep learning neural network based Stacked Auto encoders to predict user s ratings on new movies, thereby enabling movie recommendations. We consequently implement Singular Value Decomposition (SVD) to recommend movies to users. The experimental result showcase that our R S out performs a user-based neighbourhood baseline in terms of MSE on predicted ratings and in a survey in which user judge between recommendation s from both systems.


2019 ◽  
Vol 13 (28) ◽  
pp. 52-67
Author(s):  
Noor Zubair Kouder

In this work, satellite images for Razaza Lake and the surrounding areadistrict in Karbala province are classified for years 1990,1999 and2014 using two software programming (MATLAB 7.12 and ERDASimagine 2014). Proposed unsupervised and supervised method ofclassification using MATLAB software have been used; these aremean value and Singular Value Decomposition respectively. Whileunsupervised (K-Means) and supervised (Maximum likelihoodClassifier) method are utilized using ERDAS imagine, in order to getmost accurate results and then compare these results of each methodand calculate the changes that taken place in years 1999 and 2014;comparing with 1990. The results from classification indicated thatwater and hills are decreased, while vegetation, wet land and barrenland are increased for years 1999 and 2014; comparable with 1990.The classification accuracy was done by number of random pointschosen on the study area in the field work and geographical data thencompared with the classification results, the classification accuracy forthe proposed SVD method are 92.5%, 84.5% and 90% for years1990,1999,2014, respectivety, while the classification accuracies forunsupervised classification method based mean value are 92%, 87%and 91% for years 1990,1999,2014 respectivety.


2013 ◽  
Vol 479-480 ◽  
pp. 1213-1217
Author(s):  
Mu Yen Chen ◽  
Ming Ni Wu ◽  
Hsien En Lin

This study integrates the concept of context-awareness with association algorithms and social media to establish the Context-aware and Social Recommendation System (CASRS). The Simple RSSI Indoor Localization Module (SRILM) locates the user position; integrating SRILM with Apriori Recommendation Module (ARM) provides effective recommended product information. The Social Media Recommendation Module (SMRM) connects to users social relations, so that the effectiveness for users to gain product information is greatly enhanced. This study develops the system based on actual context.


Author(s):  
Wang Xiao Wang ◽  
Jianyin Xie

Abstract A new integrated algorithm of structure determination and parameter estimation is proposed for nonlinear systems identification in this paper, which is based on the Householder Transformation (HT), Givens and Modified Gram-Schmidt (MGS) algorithms. While being used for the polynomial and rational NARMAX model identification, it can select the model terms while deleting the unimportant ones from the assumed full model, avoiding the storage difficulty as the CGS identification algorithm does which is proposed by Billings et. al., and is numerically more stable. Combining the H algorithm with the modified bidiagonalization least squares (MBLS) algorithm and the singular value decomposition (SVD) method respectively, two algorithms referred to as the MBLSHT and SVDHT ones are proposed for the polynomial and rational NARMAX model identification. They are all numerically more stable than the HT or Givens or MGS algorithm given in this paper, and the MBLSHT algorithm has the best performance. A higher precision for the parameter estimation can thus be obtained by them, as supported b simulation results.


2019 ◽  
Vol 9 (1) ◽  
pp. 22-28
Author(s):  
Kutubuddin Ansari ◽  
Prabin Gyawali ◽  
Prachand Man Pradhan ◽  
Kwan-Dong Park

Abstract The present study computes B-W extension model (extended Bursa-Wolf model) coordinate transformation parameters from World Geodetic System 1984 (WGS-84) to the Everest datum namely Everest (1830) and Everest (1956) using records of coordinate measurements from Global Positioning System (GPS) observable across Nepal region. Synthetic or modeled coordinates were determined by using the Artificial Neural Network (ANN) and Singular Value Decomposition (SVD) methods. We studied 9-transformation parameters with the help of the ANN technique and validated the outcomes with the SVD method. The comparative analysis of the ANN, as well as SVD methods, was done with the observed output following one way ANOVA test. The analysis showed that the null hypothesis for both datums were acceptable and suggesting all models statistically significantly equivalent to each other. The outcomes from this study would complement a relatively better understanding of the techniques for coordinate transformation and precise coordinate assignment while assimilating data sets from different resources.


2019 ◽  
Vol 84 ◽  
pp. 01003
Author(s):  
Marcin Drechny

The article describes the NN-K-SVD method based on the use of sparse coding and the singular value decomposition to specific values. An example of using the method is the compression of load profiles. The experiment of compression of 125022 power load profiles has been carried out with the use of registered profiles in households and small offices. Two matrices: patterns (atoms) and scaling factors are the result of the discussed algorithm. Features of the created matrices, which can be used in the creation of fast power demand forecasting systems, have been characterized.


1989 ◽  
Vol 111 (4) ◽  
pp. 513-518 ◽  
Author(s):  
Chia-Hsiang Menq ◽  
Jin-Hwan Borm ◽  
Jim Z. Lai

This paper presents a method of identifying a basis set of error parameters in robot calibration using the Singular Value Decomposition (SVD) method. With the method, the error parameter space can be separated into two: observable subspace and unobservable one. As a result, for a defined position error model, one can determine the dimension of the observable subspace, which is vital to the estimation of error parameters. The second objective of this paper is to study, when unmodeled error exists, the implications of measurement configurations in robot calibration. For selecting measurement configurations in calibration, and index is defined to measure the observability of the error parameters with respect to a set of robot configurations. As the observability index increases, the attribution of the position errors to the parameters becomes dominant and the effects of the measurement and unmodeled errors become less significant; consequently better estimation of the parameter errors can be obtained.


Sign in / Sign up

Export Citation Format

Share Document