Express Isolation of The Absorption Zone in The Well with High-Rate Interstratal Cross-Flow from The Overlying High-Pressure Formation Saturated with Strong Brines and Packer Equipment for It's Implementation

Author(s):  
A.G. Vakhromeev ◽  
S.A. Sverkunov
1992 ◽  
Vol 25 (1) ◽  
pp. 1-8 ◽  
Author(s):  
P. Battistoni ◽  
G. Fava ◽  
A. Gatto

An Italian seafood factory processing frozen fish and fresh clams was investigated. Specific water consumption (SC) and pollutant emission factors (EF) are evaluated. Results evidence high SC values, in the range 18-74 1/Kg, due to defrost and extensive washing and cleaning practised; EFs appear high although not directly comparable with data reported by other authors. Two high-rate trickling filters, cross flow (CF) and vertical flow (VF), are examined over a two years period. Results suggest a pseudo half-order kinetic reaction with a superior performance of CF plastic media. From the elaboration of the experimental data a semiempirical correlation between specific surface removal (SSR) and operative parameters is obtained.


1992 ◽  
Vol 25 (10) ◽  
pp. 319-327 ◽  
Author(s):  
P. D. Rose ◽  
B. A. Maart ◽  
T. D. Phillips ◽  
S. L. Tucker ◽  
A. K. Cowan ◽  
...  

An algal high rate oxidation ponding process for treating organic s present in saline effluents has been described. The extreme halophile Dunaliella salina can be made to predominate in the system by manipulating salinity, producing products of value together with a waste treatment function. Application in treating tannery saline organic wastes was examined. Techniques appropriate for the harvesting of micro-algae from this and other algal production systems presents a limiting factor in the development of algal biotechnology. Cross-flow filtration was evaluated as a technique for micro-algal cell separation. Both microfiltration and ultrafiltration were found to produce effective algal removal from the medium, Cross-flow ultrafiltration with a polyethersulfone coated tubular filter produced effective separation with the production of cell concentrates in a viable condition. Flux rates of 30 - 40 LMH fall within acceptable levels for application in industrial processes. Cell shattering observed with microfiltration precludes its use for recovering whole or viable cell concentrates.


2021 ◽  
Vol 05 (01) ◽  
pp. 04-10
Author(s):  
Sabir Babaev ◽  
Ibrahim Habibov ◽  
Zohra Abiyeva

Prospects for the further development of the oil and gas industry are mainly associated with the development and commissioning of high-rate fields. In this regard, the production of more economical and durable equipment by machine-building enterprises, an increase in the level of its reliability and competitiveness, as well as further improvement of technological production processes, is of paramount importance. The evolution of technology in a broad sense is a representation of changes in designs, manufacturing technology, their direction and patterns. In this case, a certain state of any class of TC is considered as a result of long-term changes in its previous state; transition from existing and applied in practice vehicles to new models that differ from previous designs. These transitions, as a rule, are associated with the improvement of any performance criteria or quality indicators of the vehicle and are progressive in nature. The work is devoted to the study of the evolution of the quality of high-pressure valves during the period of their intensive development. Keywords: technical system, evolution of technology, high-pressure valves, shut-off devices, gate.


2021 ◽  
Author(s):  
Irma Kusumawati ◽  
Birger Heigre ◽  
Hunter Whitfield ◽  
Samuel Bremner ◽  
Andrea Sbordone ◽  
...  

Abstract This paper describes the utilization of a riserless light well intervention (RLWI) vessel with well control system and flexible downlines to execute a re-stimulation campaign on subsea injection wells located in the Norwegian Continental shelf in the summer of 2019 and 2020. A riserless light well intervention (RLWI) vessel with well control system and flexible downlines was used in combination with a stimulation vessel. The objective of each campaign was to increase injectivity in the wells with high-rate acid treatments. The lessons learned from the 2019 campaign were applied to the 2020 campaign, resulting in reduced health and safety exposure, and improved operational efficiency. Analysis of the treatments and their impact on injection and field pressure support was conducted to assess the effects of these improvements and provide insights for how the treatments can be applied to vessel stimulation in general. In each campaign, the RLWI vessel was connected to the subsea asset, and a dedicated stimulation vessel provided stimulation fluids via a high-pressure flexible hose connected between the two vessels. Both campaigns saw high treatment pump rates of up to 60 bbl/min with low-pH crosslinked gel fluids, 28% hydrochloric acid, and diverters in the form of ball sealers and rock salt. Hose deployment methodologies between the two vessels differed in the two campaigns. The 2019 campaign employed a conventional transfer utilizing the marine crane on the RLWI vessel to lift and lower the hose into a preexisting hanger. Learnings from this operation led to the development and use of a winch pull-in method in which the hose connection was accomplished with a hot stab connector on the RLWI vessel, eliminating human intervention and the use of the crane. The 2019 and 2020 campaigns successfully stimulated five and six subsea injection wells, respectively, and realized post-stimulation improvement in injection rates of 135%. One year of field monitoring from the first campaign shows pressure support benefits with improvements in production throughout the connecting area of the field. The winch pull-in method of hose deployment between the vessels achieved time improvements of 8 hours per stimulation treatment. In addition, the added flexibility of not needing to be within crane reach gave the operation extended working weather limits. The overall result was a significant improvement in operating efficiency between the 2019 and 2020 campaigns. The operations showed how high-rate stimulation can be achieved on subsea assets with the use of an RLWI and stimulation vessels. Detailed analysis of the operational efficiency of each campaign was performed, and the improvements from one campaign to the next documented. The winch pull-in method is a new way of high-pressure hose transfer that can be applied to future stimulation vessel operations to improve operational safety and efficiency.


Author(s):  
V. Zakkay ◽  
E. A. M. Gbordzoe ◽  
K. M. Sellakumar ◽  
C. Q. Lu

Three hot gas clean up units namely, the Screenless Granular Bed Filter (GBF), Ceramic Cross-flow Filter (CXF) and High Temperature, High Pressure Electrostatic Precipitator (ESP) designed for PFBC combined cycle power applications were tested at the New York University (NYU) DOE-PFBC facility located at Westbury, New York using a 780 mm ID pressurized fluidized bed combustor. The combustor was operated up to 10 atma and 870 °C. With the exception of the ESP whose performance was hampered by persistent electrode bushing failure, the particulate capturing efficiencies of the GBF and the CXF were predominantly in the upper 90 % range. The dust loading leaving the filters was consistently lower than the NSPS particulate emission limit. The results also indicate that the filter exit gas stream may meet the gas turbine particulate tolerance limit. None of the three high temperature, high pressure (HTHP) gas clean up units tested emerges as a favorite for use in cleaning PFBC exhaust stream because, each has mechanical design as well as operational flaws which could be corrected. The Cross-flow filter suffered from filter element cracking or delamination or gasket failure during its short test program. The backpulse cleaning system also needs to be optimized. The GBF is susceptible to media bubbling and granule flow problems through its lower seal leg. The Electrostatic Precipitator tested at NYU failed because its electrode bushings cracked due to overheating and could not hold their designed voltage. Further HTHP filter testing at the sub-pilot plant scale is necessary to optimize filter design and develop effective operational procedures for the hot gas clean up systems that will make them viable for commercial PFBC application.


Author(s):  
LUCY RU-SIU YIN

The ultimate aim of ultrastructural fixation of biological specimen is to preserve all the compartments in their native state. Cryofixation is a superior method than conventional chemical fixation in reaching this goal. However, ice crystal formation during cryofixation often damages the structures. High pressure (2100 bar) freezing provides a way to alter freezing properties while cool down the specimen at a relatively high rate, minimizing the ice crystal formation. Nearly vitrified samples(up to 500 um) have been obtained with this method. Samples in suspension tend to get lost during high pressure freezing. The low percentage (∼30%) of successfully cryofixed specimens can be improved if the sample completely fills the cavity of the metal specimen carriers in which the specimen is frozen. Various methods to overcome sample loss are reported in this study.


Sign in / Sign up

Export Citation Format

Share Document