scholarly journals Effect of light-curing time on light-cure/post-cure volumetric polymerization shrinkage and regional ultimate tensile strength at different depths of bulk-fill resin composites

2019 ◽  
Vol 38 (4) ◽  
pp. 621-629
Author(s):  
Kurumi IDE ◽  
Masatoshi NAKAJIMA ◽  
Juri HAYASHI ◽  
Keiichi HOSAKA ◽  
Masaomi IKEDA ◽  
...  
2020 ◽  
Vol 45 (5) ◽  
pp. 496-505
Author(s):  
CS Sampaio ◽  
PG Pizarro ◽  
PJ Atria ◽  
R Hirata ◽  
M Giannini ◽  
...  

Clinical Relevance Shortened light curing does not affect volumetric polymerization shrinkage or cohesive tensile strength but negatively affects the shear bond strength of some bulk-fill resin composites. When performing shortened light curing, clinicians should be aware of the light output of their light-curing units. SUMMARY Purpose: To evaluate volumetric polymerization shrinkage (VPS), shear bond strength (SBS) to dentin, and cohesive tensile strength (CTS) of bulk-fill resin composites (BFRCs) light activated by different modes. Methods and Materials: Six groups were evaluated: Tetric EvoCeram bulk fill + high mode (10 seconds; TEC H10), Tetric EvoFlow bulk fill + high mode (TEF H10), experimental bulk fill + high mode (TEE H10), Tetric EvoCeram bulk fill + turbo mode (five seconds; TEC T5), Tetric EvoFlow bulk fill + turbo mode (TEF T5), and experimental bulk fill + turbo mode (TEE T5). Bluephase Style 20i and Adhese Universal Vivapen were used for all groups. All BFRC samples were built up on human molar bur-prepared occlusal cavities. VPS% and location were evaluated through micro–computed tomography. SBS and CTS tests were performed 24 hours after storage or after 5000 thermal cycles; fracture mode was analyzed for SBS. Results: Both TEC H10 and TEE H10 presented lower VPS% than TEF H10. However, no significant differences were observed with the turbo-curing mode. No differences were observed for the same BFRC within curing modes. Occlusal shrinkage was mostly observed. Regarding SBS, thermal cycling (TC) affected all groups. Without TC, all groups showed higher SBS values for high mode than turbo mode, while with TC, only TEC showed decreased SBS from high mode to turbo modes; modes of fracture were predominantly adhesive. For CTS, TC affected all groups except TEE H10. In general, no differences were observed between groups when comparing the curing modes. Conclusions: Increased light output with a shortened curing time did not jeopardize the VPS and SBS properties of the BFRCs, although a decreased SBS was observed in some groups. TEE generally showed similar or improved values for the tested properties in a shortened light-curing time. The VPS was mostly affected by the materials tested, whereas the SBS was affected by the materials, curing modes, and TC. The CTS was not affected by the curing modes.


2018 ◽  
Vol 43 (6) ◽  
pp. 619-630 ◽  
Author(s):  
N Rohr ◽  
JA Müller ◽  
J Fischer

ABSTRACT Objective: The purpose of this study was to establish a clinically appropriate light-curing moment for resin composite cements while achieving the highest indirect tensile strength and lowest polymerization shrinkage. Methods and Materials: Polymerization shrinkage of seven resin composite cements (Multilink Automix, Multilink Speed Cem, RelyX Ultimate, RelyX Unicem 2 Automix, Panavia V5, Panavia SA plus, VITA Adiva F-Cem) was measured at ambient temperatures of 23°C and 37°C. Testing was done for autopolymerized and light-cured specimens after light application at either 1, 5, or 10 minutes after mixing. Indirect tensile strength of all cements was measured after 24 hours of storage at temperatures of 23°C and 37°C, for autopolymerized and light-cured specimens after light application 1, 5, or 10 minutes after mixing. To illustrate filler size and microstructures, SEM images of all cements were captured. Statistical analysis was performed with one-way ANOVA followed by post hoc Fisher LSD test (α=0.05). Results: Final polymerization shrinkage of the resin composite cements ranged from 3.2% to 7.0%. An increase in temperature from 23°C to 37°C as well as the light-curing moment resulted in material dependent effects on the polymerization shrinkage and indirect tensile strength of the cements. Polymerization shrinkage of the cements did not correlate with the indirect tensile strength of the cement in the respective groups. Highest indirect tensile strengths were observed for the materials containing a homogeneous distribution of fillers with a size of about 1 μm (Multilink Automix, Panavia V5, VITA Adiva F-Cem). Conclusion: The magnitude of the effect of light-curing moment and temperature increase on polymerization shrinkage and indirect tensile strength of resin composite cements is material dependent and cannot be generalized.


2017 ◽  
Vol 11 (01) ◽  
pp. 022-028 ◽  
Author(s):  
Maan M. AlShaafi

ABSTRACT Objective: To evaluate the effects of curing two resin-based composites (RBC) with the same radiant exposures at 730, 1450, and 2920 mW/cm2. Materials and Methods: Two types of RBC, Filtek Supreme Ultra and Tetric-EvoCeram-Bulk Fill, were light-cured to deliver the same radiant exposures for 5, 10, or 20 s by means of a modified Valo light emitted diode light-curing unit with the light tip placed directly over each specimen. The RBC was expressed into metal rings that were 2.0 and 4.0 mm in thickness, directly on an attenuated total reflectance Fourier transform infrared plate heated to 33°C, and the degree of conversion (DC) of the RBC was recorded. The specimens were then removed and the Knoop microhardness (KHN) was tested at both the bottom and the top of each specimen. The KHN was tested again after 24 h and 7 days of storage in the dark at 37°C and 100% humidity. The DC and KHN results were analyzed with Fisher's protected least significant difference at α = 0.05. Results: The DC values for the specimens cured at the three different irradiance levels were similar. However, at different depths, there were differences in the DC values. In general, there were no clear differences among the samples cured in the three different groups, and the KHN was always greater 24 h and 7 days later (P < 0.05). Conclusions: Despite the curing time, and as long as the samples were cured with the same radiant exposures, there were no significant effects on the DC and KHN of both RBCs.


2010 ◽  
Vol 26 (5) ◽  
pp. 585-589 ◽  
Author(s):  
Young-Oh Kim ◽  
Soo-Byung Park ◽  
Woo-Sung Son ◽  
Ching-Chang Ko ◽  
Franklin García-Godoy ◽  
...  

2019 ◽  
Vol S (1) ◽  
pp. 44-47
Author(s):  
Maan M. Nayif ◽  

Objective: To evaluate the ultimate tensile strength (UTS) of total and self- etch adhesives irradiated at different distances. Materials and Methods: Sixty cylindrical specimens of 0.78mm diameter and 10 mm length were prepared of two types of adhesive systems total etch Excite DSC (EX – Ivoclar Vivadent, Schaan, Liechtenstein) and one-step self-etch Clearfil S3 Bond (S3, Kuraray Medical Inc., Tokyo, Japan). Specimens of each adhesive were divided into three groups according to the light irradiation distance (0, 2, 4mm) (n=10). Each specimen was attached to universal testing machine (Digital Force Gauge, IMADA CO., LTD, Japan) and loaded at cross head speed of 1mm/min until failure. Data were analyzed using two-way ANOVA and Independent Student t-test at p< 0.05. Results: Mean UTS for total etch (24.63, 18.19, 17.26 Mpa) and for self-etch (12.68, 8.53, 7.58Mpa) at (0, 2, 4mm) distances. Specimens irradiated directly show significantly the highest UTS while those irradiated at 4mm show the lowest values (p<0.05). Excite DSC total etch adhesive have higher UTS than Clearfil S3 self-etch adhesive regardless of irradiation distance (p<0.05).Conclusions: The UTS of the evaluated adhesives was light irradiation distance and adhesive system dependant.


1992 ◽  
Vol 71 (11) ◽  
pp. 1847-1850 ◽  
Author(s):  
A. Peutzfeldt ◽  
E. Asmussen

The present study investigated a concept for additional crosslinking of dental polymers, by which resistance to wear of resin composites might be increased. Bifunctional ketones were added to monomer mixtures, which were then made light-curing and loaded with filler. The monomer mixtures were varied with respect to type and ratio of monomer and ketone. For measurement of possible effects of the cross-linking agents added, four mechanical properties of the experimental resin composites were determined. Addition of the bifunctional ketone diacetyl resulted in the following increases in mechanical properties: diametral tensile strength, 11%; flexural strength, 29%; modulus of elasticity, 19%; and modulus of resilience, 50%.


2007 ◽  
Vol 8 (6) ◽  
pp. 1-8 ◽  
Author(s):  
José Roberto Lovadino ◽  
Gláucia Maria Bovi Ambrosano ◽  
Flávio Henrique Baggio Aguiar ◽  
Aline Braceiro ◽  
Débora Alves Nunes Leite Lima

Abstract Aims The aim of this in vitro study was to evaluate the influence of light curing modes and curing time on the microhardness of a hybrid composite resin. Methods and Materials Forty-five Z250 composite resin specimens (3M-ESPE Dental Products, St. Paul, MN, USA) were randomly divided into nine groups (n=5): three polymerization modes (conventional - 550 mW/ cm2; light-emitting diodes (LED) - 360mW/cm2, and high intensity - 1160 mW/cm2) and three light curing times (once, twice, and three times the manufacturer's recommendations). All samples were polymerized with the light tip 8 mm from the specimen. Knoop microhardness measurements were obtained on the top and bottom surfaces of the sample. Results Conventional and LED polymerization modes resulted in higher hardness means and were statistically different from the high intensity mode in almost all experimental conditions. Tripling manufacturers’ recommended light curing times resulted in higher hardness means; this was statistically different from the other times for all polymerization modes in the bottom surface of specimens. This was also true of the top surface of specimens cured using the high intensity mode but not of conventional and LED modes using any of the chosen curing times. Top surfaces showed higher hardness than bottom surfaces. Conclusions It is important to increase the light curing time and use appropriate light curing devices to polymerize resin composite in deep cavities to maximize the hardness of hybrid composite resins. Citation Aguiar FHB, Braceiro A, Lima DANL, Ambrosano GMB, Lovadino JR. Effect of Light Curing Modes and Light Curing Time on the Microhardness of a Hybrid Composite Resin. J Contemp Dent Pract 2007 September; (8)6:001-008.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Luca Marigo ◽  
Giuseppina Nocca ◽  
Giulia Fiorenzano ◽  
Cinzia Callà ◽  
Raffaella Castagnola ◽  
...  

The aim of this study was to evaluate the effect of light-curing protocols on two modern resin composites using different air-inhibition coating strategies. This was accomplished by assessing the amount of monomer elution, surface microhardness, and composite discoloration in different storage conditions. A total of 120 specimens were prepared using Filtek Supreme XTE (3M ESPE, Seefeld, Germany) and CeramX Universal (Dentsply DeTrey, Konstanz, Germany). Specimens were light-cured in air as per manufacturer’s instructions or in the absence of oxygen. This latter condition was achieved using three different approaches: (i) transparent polyester strip; (ii) glycerin; (iii) argon gas. Specimens were assessed for release of monomers, Vickers hardness, and discoloration after storage in different solutions. The results were analyzed with ANOVA one-way test followed by Student-Newman-Keuls test. Moreover, multiple comparisons of means were performed using the Student t-test (p<0.05). The amount of monomers released from the tested specimens was very low in all conditions. The presence of oxygen induced some decrease in microhardness. The highest discoloration values, for both materials, were obtained after ageing in red wine. In case finish and polish procedures are awkward to achieve in posteriors composite restoration, light-curing in the absence of oxygen should be considered, especially when performing composite restoration in esthetic areas.


Sign in / Sign up

Export Citation Format

Share Document