scholarly journals PREPARATION OF PLLA MEMBRANES WITH DIFFERENT MORPHOLOGIES FOR CULTURE OF LIGAMENT CELLS

2006 ◽  
Vol 18 (04) ◽  
pp. 185-189 ◽  
Author(s):  
I-CHI LEE ◽  
TAI-HORNG YOUNG

Poly (lactic acid) is a biodegradable biomedical material that has been used for connective tissue reconstruction. In this work, poly-L-lactide (PLLA) membranes with different morphologies were prepared by phase separation method. Otherwise, biomaterials coated with various extracellular matrix (ECM) have been shown to promote cell adhesion, proliferation, and differentiation. In addition, the in vitro interaction of medial collateral ligament cells (MCLs) and PLLA membranes with dense, porous and particulate morphologies and with ECM coating was investigated. It was found that the cell compatibility of three types of PLLA membranes almost the same before coating ECM. The results also revealed that collagen type I could improve ligament cells adhesion and fibronectin could improve ligament cells growth, and this effect was most obvious in particulate membrane. Therefore, because the PLLA materials with particulate structure could adsorb more ECM which in turn influenced the cell adhesion and cell growth. The PLLA membrane with the particulate morphology satisfies the biomaterial requirement necessary for temporary scaffold to transplanted ligament cells and provides a means for the architectural design of more complex tissue-engineered systems.

1983 ◽  
Vol 96 (6) ◽  
pp. 1820-1823 ◽  
Author(s):  
S C Stamatoglou ◽  
J M Keller

Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.


2006 ◽  
Vol 290 (5) ◽  
pp. L971-L977 ◽  
Author(s):  
Maiko Moriyama ◽  
Satoru Fukuyama ◽  
Hiromasa Inoue ◽  
Takafumi Matsumoto ◽  
Takahiro Sato ◽  
...  

Neuromedin U (NMU) is a neuropeptide expressed not only in the central nervous system but also in various organs, including the gastrointestinal tract and lungs. NMU interacts with two G protein-coupled receptors, NMU-R1 and NMU-R2. Although NMU-R2 is expressed in a specific region of the brain, NMU-R1 is expressed in various peripheral tissues, including immune and hematopoietic cells. Our recent study demonstrated an important role of NMU in mast cell-mediated inflammation. In this study, we showed that airway eosinophilia was reduced in NMU-deficient mice in an allergen-induced asthma model. There were no differences in the antigen-induced Th2 responses between wild-type and NMU knockout mice. NMU-R1 was highly expressed in the eosinophil cell line, and NMU directly induced Ca2+mobilization and extracellular/signal-regulated kinase phosphorylation. NMU also induced cell adhesion to components of the extracellular matrix (fibronectin and collagen type I), and chemotaxis in vitro. Furthermore, NMU-R1 was also expressed in human peripheral blood eosinophils, and NMU induced cell adhesion in a dose-dependent manner. These data indicate that NMU promotes eosinophil infiltration into inflammatory sites by directly activating eosinophils. Our study suggests that NMU receptor antagonists could be novel targets for pharmacological inhibition of allergic inflammatory diseases, including asthma.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


1996 ◽  
Vol 132 (4) ◽  
pp. 741-752 ◽  
Author(s):  
C Sundberg ◽  
K Rubin

We report that integrin-mediated signaling induces a rapid and transient tyrosine phosphorylation of platelet-derived growth factor (PDGF) beta-receptors in human diploid foreskin AG 1518 fibroblasts. A transient tyrosine phosphorylation of PDGF beta-receptors was evident one and two hours after cells had been plated on collagen type I and fibronectin, as well as on immobilized anti-integrin subunit IgG, but not on poly-L-lysine. In contrast EGF or PDGF alpha-receptors were not phosphorylated on tyrosine residues under these conditions. Tyrosine phosphorylation of PDGF beta-receptors induced by plating on collagen type I was inhibited by cytochalasin D and herbimycin A, unaffected by cycloheximide and enhanced by orthovanadate. Furthermore, a transient phosphorylation of PDGF beta-receptors occurred when AG 518 fibroblasts were cultured in three-dimensional collagen lattices or exposed to external strain exerted through centrifugation. The latter effect was evident already after two minutes. Clustering of cell surface beta1 integrins led to PDGF beta-receptor phosphorylation both in suspended and firmly attached AG 1518 fibroblasts. Plating of cells on collagen type I, fibronectin, and anti-beta1-integrin IgG resulted in the formation of PDGF beta-receptor aggregates as detected by immunofluorescence. Suramin or anti-PDGF-BB IgG had no effect on the plating-induced tyrosine phosphorylation of PDGF beta-receptors. PDGF-B chain mRNA, or protein, were not detected in AG 1518 fibroblasts. Our data suggest that a ligand-independent PDGF beta-receptor activation during cell adhesion and early phases of cell spreading is involved in integrin-mediated signaling in fibroblasts, and constitutes parts of a mechanism for cells to respond during the dynamic phases of externally applied tension as well as fibroblast-mediated tension during cell adhesion and collagen gel contraction.


2017 ◽  
Vol 312 (3) ◽  
pp. G219-G227 ◽  
Author(s):  
Leonie Beljaars ◽  
Sara Daliri ◽  
Christa Dijkhuizen ◽  
Klaas Poelstra ◽  
Reinoud Gosens

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-β warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-β significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1β and TNF-α. Additionally, TGF-β induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-β-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-β and plays an important role in TGF-β-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo. NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-β and its activities are primarily profibrotic.


1999 ◽  
Vol 112 (2) ◽  
pp. 243-252
Author(s):  
E. Planus ◽  
S. Galiacy ◽  
M. Matthay ◽  
V. Laurent ◽  
J. Gavrilovic ◽  
...  

Type II pneumocytes are essential for repair of the injured alveolar epithelium. The effect of two MMP collagenases, MMP-1 and MMP-13 on alveolar epithelial repair was studied in vitro. The A549 alveolar epithelial cell line and primary rat alveolar epithelial cell cultures were used. Cell adhesion and cell migration were measured with and without exogenous MMP-1. Wound healing of a cell monolayer of rat alveolar epithelial cell after a mechanical injury was evaluated by time lapse video analysis. Cell adhesion on type I collagen, as well as cytoskeleton stiffness, was decreased in the presence of exogenous collagenases. A similar decrease was observed when cell adhesion was tested on collagen that was first incubated with MMP-1 (versus control on intact collagen). Cell migration on type I collagen was promoted by collagenases. Wound healing of an alveolar epithelial cell monolayer was enhanced in the presence of exogenous collagenases. Our results suggest that collagenases could modulate the repair process by decreasing cell adhesion and cell stiffness, and by increasing cell migration on type I collagen. Collagen degradation could modify cell adhesion sites and collagen degradation peptides could induce alveolar type II pneumocyte migration. New insights regarding alveolar epithelial cell migration are particularly relevant to investigate early events during alveolar epithelial repair following lung injury.


2010 ◽  
Vol 298 (2) ◽  
pp. H608-H613 ◽  
Author(s):  
Lavinia Tran ◽  
Andrew R. Kompa ◽  
Will Kemp ◽  
Arintaya Phrommintikul ◽  
Bing H. Wang ◽  
...  

The vasoactive peptide urotensin-II (U-II) is likely to play a key causal role in cardiac remodeling that ultimately leads to heart failure. Its contribution, specifically to the development of diastolic dysfunction and the downstream intracellular signaling, however, remains unresolved. This study interrogates the effect of chronic U-II infusion in normal rats on cardiac structure and function. The contribution of Rho kinase (ROCK) signaling to these pathophysiological changes is evaluated in cell culture studies. Chronic high-dose U-II infusion over 4 wk significantly impaired diastolic function in rats on echocardiography-derived Doppler indexes, including E-wave deceleration time (vehicle 56.7 ± 3.3 ms, U-II 118.0 ± 21.5 ms; P < 0.01) and mitral valve annulus peak early/late diastolic tissue velocity (vehicle 2.01 ± 0.19 ms, U-II 1.04 ± 0.25 ms; P < 0.01). A lower dose of U-II infusion (1 nmol·kg−1·h−1) yielded comparable changes. Diastolic dysfunction was accompanied by molecular [significant increases in procollagen-α1(I) gene expression on real-time PCR] and morphological (increases in total collagen, P < 0.05, and collagen type-I protein deposition, P < 0.001) evidence of left ventricular (LV) fibrosis following high-dose U-II infusion. The ROCK inhibitor GSK-576371 (10−7 to 10−5 M) elicited concentration-dependent inhibition of U-II (10−7 M)-stimulated cardiac fibroblast collagen synthesis and cardiac myocyte protein synthesis. Chronic U-II infusion causes diastolic dysfunction, caused by fibrosis of the LV. The in vitro data suggest that this may be in part occurring via a ROCK-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document