Fuzzy-Controlled Energy-Conservation Technique (FET) for Mobile ad hoc Networks

Author(s):  
Anuradha Banerjee

Nodes in ad hoc networks have limited battery power; hence, they require energy efficient techniques to improve average node lifetime and network performance. Maintaining energy efficiency in network communication is really challenging because highest energy efficiency is achieved if all the nodes are switched off and maximum network throughput is obtained if all the nodes are fully operational, i.e. always turned on. A promising energy conservation technique for the ad hoc networks must maintain effective packet forwarding capacity while turning off the network interface of very busy nodes for some time and redirecting the traffic through some comparatively idle nodes roaming around them. This also helps in fair load distribution in the network and maintenance of network connectivity by reducing the death rate (complete exhaustion of nodes). The present chapter proposes a fuzzy-controlled energy conservation technique (FET) that identifies the busy and idle nodes to canalize some traffic of busy nodes through the idle ones. In simulation section, the FET embedded versions of several state-of-the-art routing protocols in ad hoc networks are compared with their ordinary versions and the results quite emphatically establish the superiority of FET-embedded versions in terms of packet delivery ratio, message cost, and network energy consumption. End-to-end delay also reduces significantly.

Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6743
Author(s):  
Fan Zhang ◽  
Gangqiang Yang

High-speed mobility and heavy-load traffic in mobile Ad hoc networks (MANET) may result in frequent topology changes and packet loss. To guarantee packet delivery, a novel stable backup routing (SBR) scheme is put forward in this paper, which consists of the establishment of backup routes and route maintenance. In SBR, backup routes are set up by overhearing MAC signals, and the bit error rate is considered in path selection for improving stability. To repair broken links effectively and reasonably, qualified backup routes are classified into three categories with different priorities, based on which the relevant nodes decide how to reconstruct the forwarding path. Extensive simulations demonstrate that our proposed method outperforms other comparable backup routing mechanisms in terms of packet delivery ratio, average delay and control overhead.


2018 ◽  
Vol 21 (1) ◽  
pp. 89
Author(s):  
I A Kaysina ◽  
D S Vasiliev ◽  
A V Abilov ◽  
A E Kaysin ◽  
A I Nistyuk

Описан тестовый стенд, который позволяет произвести оценку эффективности новых алгоритмов кодирования в летающих сенсорных сетях (Flying Ad Hoc Networks, FANET), в том числе и метода сетевого кодирования. В тестовый стенд входят: наземная станция (ноутбук), летающий робот (беспилотный летальный аппарат, БПЛА) и несколько микрокомпьютеров Raspberry Pi 3. С помощью тестового стенда была оценена возможная дальность связи между наземной станцией и летающим роботом, а также доказана возможность реализации сетевого кодирования на промежуточном узле на базе Raspberry Pi 3. Оценка дальности связи между наземной станцией и летающим роботом была произведена с помощью первого сценария. Летающий робот отправлял видеоданные с бортовой камеры на наземную станцию. После сбора всех данных было проанализировано качество обслуживания (quality of service, QoS) и рассчитан коэффициент доставленных пакетов (Packet Delivery Ratio, PDR) с помощью программы анализатора сетевого трафика Wireshark. По результатам измерений была найдена максимальная дальность связи между наземной станцией и летающим роботом с использованием стандарта 802.11n (Wi-Fi). Возможность реализации сетевого кодирования в самоорганизующихся сетях была произведена с помощью второго сценария. Была создана самоорганизующаяся сеть из трех микрокомпьютеров Raspberry Pi 3. Для маршрутизации данных использовался протокол B.A.T.M.A.N., на основе которого может быть проанализирована одна из реализаций метода сетевого кодирования.


Author(s):  
Shamsul J Elias ◽  
M. Elshaikh ◽  
M. Yusof Darus ◽  
Jamaluddin Jasmis ◽  
Angela Amphawan

<p>Vehicular Ad hoc Networks (VANET) play a vital Vehicle to Infrastructure (V2I) correspondence frameworks where vehicle are convey by communicating and conveying data transmitted among each other. Because of both high versatility and high unique network topology, congestion control should be executed distributedly. Optimizing the congestion control in term of delay rate, packet delivery ratio (PDR) and throughput could limit the activity of data packet transmissions. These have not been examined altogether so far – but rather this characteristic will be fundamental for VANET system execution and network system performance. This paper exhibits a novel strategy for congestion control and data transmission through Service Control Channel (SCH) in VANET. The Taguchi strategy has been connected in getting the optimize value of parameter for congstion control in highway environment. This idea lessens the pointless activity of data transmission and decreases the likelihood of congested in traffic in view of execution for measuring the delay rate, packet delivery ratio (PDR) and throughput. The proposed execution performance is estimated with the typical VANET environment in V2I topology in highway driving conditions and the simulation results demonstrate and enhance network execution performance with effective data transmission capacity.</p>


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 498-507 ◽  
Author(s):  
Marjan Kuchaki Rafsanjani ◽  
Hamideh Fatemidokht ◽  
Valentina Emilia Balas

AbstractMobile ad hoc networks (MANETs) are a group of mobile nodes that are connected without using a fixed infrastructure. In these networks, nodes communicate with each other by forming a single-hop or multi-hop network. To design effective mobile ad hoc networks, it is important to evaluate the performance of multi-hop paths. In this paper, we present a mathematical model for a routing protocol under energy consumption and packet delivery ratio of multi-hop paths. In this model, we use geometric random graphs rather than random graphs. Our proposed model finds effective paths that minimize the energy consumption and maximizes the packet delivery ratio of the network. Validation of the mathematical model is performed through simulation.


2015 ◽  
Vol 738-739 ◽  
pp. 1115-1118
Author(s):  
Li Cui Zhang ◽  
Xiao Nan Zhu ◽  
Zhi Gang Wang ◽  
Guang Hui Han

Considering the shortcoming of the traditional Greedy Perimeter Stateless Routing Protocol in the Vehicular Ad hoc Networks ,this paper focuses on an improved GPSR protocol based on the density of vehicle flow .This new scheme includes macro-directing algorithm , micro-forwarding strategy and the maintenance of the neighbor list.The simulation result shows that compared with the traditional GPSR protocol, the new GPSR protocol improves data packet delivery ratio, but its average end-to-end delay is slightly larger than before.


Sign in / Sign up

Export Citation Format

Share Document