Recent Advances in Computational Complexity Techniques for Video Coding Applications

Author(s):  
Dan Grois ◽  
Ofer Hadar

The computational complexity issue is critical for present and future video applications implemented by relatively new video coding standards, such as the H.264/AVC (Advanced Video Coding), which has a large number of coding modes. One of the main reasons for the importance of providing an efficient complexity control in video coding applications is a strong need to decrease the encoding/decoding computational complexity, especially when the encoding and/or decoding devices are resource-limited, such as portable devices. In turn, efficient complexity control enables reducing the video coding processing time and enables saving power resources during the encoding and/or decoding process. Since the recent dramatic progress in the development of multimedia technologies has made portable devices widespread everywhere, especially in order to provide or receive real-time video contents, the need to enhance the computational complexity control in video coding applications is expected to be further significantly increased as a function of the dramatic increase in the mobile/portable device penetration into the every-day life environment. In this chapter, the authors perform a comprehensive review of the recent advances in computational complexity techniques for video coding applications. This chapter will not only summarize the recent advances in this field, but will also provide explicit directions for the design of the future complexity-aware video coding applications.

2014 ◽  
Vol 23 (05) ◽  
pp. 1450069
Author(s):  
FARZAD ZARGARI ◽  
SEDIGHE GHORBANI

In order to achieve higher compression performance the fidelity range extension (FRExt) amendment was added to the H.264 advanced video coding (AVC) standard. It uses both 4 × 4 and 8 × 8 integer discrete cosine transform (DCT) adaptively in the high profiles. This led to additional complexity of the initial version of the H.264/AVC encoder which had substantially high computational complexity. In this paper, we propose a new algorithm which reduces the computational complexity for software implementation of horizontal 8 × 8 integer DCT by more than 25%. Simulation results indicate 22% reduction in the computation time by using the proposed algorithm.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sierra M. Brooks ◽  
Hal S. Alper

AbstractSynthetic biology holds great promise for addressing global needs. However, most current developments are not immediately translatable to ‘outside-the-lab’ scenarios that differ from controlled laboratory settings. Challenges include enabling long-term storage stability as well as operating in resource-limited and off-the-grid scenarios using autonomous function. Here we analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery. Across the Perspective, we highlight recent advances, areas for further development, possibilities for future applications, and the needs for innovation at the interface of other disciplines.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 269 ◽  
Author(s):  
Karin Hellner ◽  
Lucy Dorrell

High-risk human papillomaviruses (hrHPV) are responsible for anogenital and oropharyngeal cancers, which together account for at least 5% of cancers worldwide. Industrialised nations have benefitted from highly effective screening for the prevention of cervical cancer in recent decades, yet this vital intervention remains inaccessible to millions of women in low- and middle-income countries (LMICs), who bear the greatest burden of HPV disease. While there is an urgent need to increase investment in basic health infrastructure and rollout of prophylactic vaccination, there are now unprecedented opportunities to exploit recent scientific and technological advances in screening and treatment of pre-invasive hrHPV lesions and to adapt them for delivery at scale in resource-limited settings. In addition, non-surgical approaches to the treatment of cervical intraepithelial neoplasia and other hrHPV lesions are showing encouraging results in clinical trials of therapeutic vaccines and antiviral agents. Finally, the use of next-generation sequencing to characterise the vaginal microbial environment is beginning to shed light on host factors that may influence the natural history of HPV infections. In this article, we focus on recent advances in these areas and discuss their potential for impact on HPV disease.


2013 ◽  
Vol 71 (16) ◽  
pp. 12-17
Author(s):  
John MduduziMudumbe ◽  
James Ntaganda ◽  
Cho Yong Beom

2021 ◽  
Author(s):  
Jianhua Wang ◽  
Feng Lin ◽  
Jing Zhao ◽  
Yongbing Long

Abstract HEVC (High Efficiency Video Coding), as one of the newest international video coding standard, can achieve about 50% bit rate reduction compared with H.264/AVC (Advanced Video Coding) at the same perceptual quality due to the use of flexible CTU(coding tree unit) structure, but at the same time, it also dramatically adds the higher computational complexity for HEVC. With the aim of reducing the computational complexity, a texture grouping and statistical optimization based mode prediction decision algorithm is proposed for HEVC intra coding in this paper. The contribution of this paper lies in the fact that we successfully use the texture information grouping and statistical probability optimization technology to rapidly determine the optimal prediction mode for the current PU, which can reduce many unnecessary prediction and calculation operations of HCost (Hadamard Cost) and RDCost (Rate Distortion Cost) in HEVC, thus saving much computation complexity for HEVC. Specially, in our scheme, firstly we group 35 intra prediction modes into 5 subsets of candidate modes list according to its texture information of edge in the current PU, and each subset only contains 11 intra prediction modes, which can greatly reduce many traversing number of candidate mode in RMD (Rough Mode Decision) from 35 to 11 prediction modes; Secondly we use the statistical probability of the first candidate modes in candidate modes list as well as MPM selected as the optimal prediction mode to reduce the number of candidate modes in RDO(Rate Distortion Optimization), which can reduce the number of candidate modes from 3+MPM or 8+MPM to 2 candidate modes; At last, we use the number of candidate modes determined above to quickly find the optimal prediction mode with the minimum RDCost by RDO process. As a result, the computational complexity of HEVC can be efficiently reduced by our proposed scheme. And the simulation results of our experiments show that our proposed intra mode prediction decision algorithm based on texture information grouping and statistical probability optimization in this paper can reduce about 46.13% computational complexity on average only at a cost of 0.67% bit rate increase and 0.056db PSNR decline compared with the standard reference HM16.1 algorithm.


Author(s):  
Babitha S ◽  
Mr. Hemanth Naidu K J ◽  
Mr. Ashwin Goutham G ◽  
Mr. Harshith S V

Portable electronic devices mostly used battery as their primary source for operation hence longer running batteries or Power resources or vital for any portable device need for stable voltage supplies have led to the development of low dropout voltage regulators low dropout regulators provide stable regulated output voltage in various operating conditions which makes it useful in portable devices that design of high performance and stable low dropout voltage regulator is a challenge nowadays with decreasing device size and increasing power densities. The proposed circuit used a 5pack architecture of error amplifier. This paper proposes the study of behavior of the LDO voltage regulator with internal capacitors i.e., capless. The regulated voltage of 1.8V is obtained using the typical power supply of 2.2V obtained dropout voltage of 400mv with the delay of 12.77micro sec, power consumed 1.816W. The proposed design produced DC gain of 31.77db,with the load current variation of 0 to 20mA. The capless LDO architecture is verified in the Cadence 180nm technology. The architecture provides a stable gain and plot for both Temperature and Load Variations. The stability issues are overcome using the compensation techniques which uses a current amplifier and a capacitor in the differentiator configuration. The current amplifier implemented uses current mirror with current copying ratio of unity.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091100
Author(s):  
Yi Chen ◽  
Hongxia Wang ◽  
Xiaoxu Tang ◽  
Yong Liu ◽  
Hanzhou Wu ◽  
...  

Developing the technology of reversible data hiding based on video compression standard, such as H.264/advanced video coding, has attracted increasing attention from researchers. Because it can be applied in some applications, such as error concealment and privacy protection. This has motivated us to propose a novel two-dimensional reversible data hiding method with high embedding capacity in this article. In this method, all selected quantized discrete cosine transform coefficients are first paired two by two. And then, each zero coefficient-pair can embed 3 information bits and the coefficient-pairs only containing one zero coefficient can embed 1 information bit. In addition, only one coefficient of each one of the rest coefficient-pairs needs to be changed for reversibility. Therefore, the proposed two-dimensional reversible data hiding method can obtain high embedding capacity when compared with the related work. Moreover, the proposed method leads to less degradation in terms of peak-signal-to-noise ratio, structural similarity index, and less impact on bit-rate increase.


Sign in / Sign up

Export Citation Format

Share Document