Engineering Gene Control Circuits with Allosteric Ribozymes in Human Cells as a Medicine of the Future

2013 ◽  
pp. 860-883
Author(s):  
Robert Penchovsky

Systems and synthetic biology promise to develop new approaches for analysis and design of complex gene expression regulatory networks in living cells with many practical applications to the pharmaceutical and biotech industries. In this chapter the development of novel universal strategies for exogenous control of gene expression is discussed. They are based on designer allosteric ribozymes that can function in the cell. The synthetic riboswitches are obtained by a patented computational procedure that provides fast and accurate modular designs with various Boolean logic functions. The riboswitches can be designed to sense in the cell either the presence or the absence of disease indicative RNA(s) or small molecules, and to switch on or off the gene expression of any exogenous protein. In addition, the riboswitches can be engineered to induce RNA interference or microRNA pathways that can conditionally down regulate the expression of key proteins in the cell. That can prevent a disease’s development. Therefore, the presented synthetic riboswitches can be used as truly universal cellular biosensors. Nowadays, disease indicative RNA(s) can be precisely identified by employing next-generation sequencing technologies with high accuracy . The methods can be employed not only for exogenous control of gene expression but also for re-programming the cell fate, anticancer, and antiviral gene therapies. Such approaches may be employed as potent molecular medicines of the future.

Author(s):  
Robert Penchovsky

Systems and synthetic biology promise to develop new approaches for analysis and design of complex gene expression regulatory networks in living cells with many practical applications to the pharmaceutical and biotech industries. In this chapter the development of novel universal strategies for exogenous control of gene expression is discussed. They are based on designer allosteric ribozymes that can function in the cell. The synthetic riboswitches are obtained by a patented computational procedure that provides fast and accurate modular designs with various Boolean logic functions. The riboswitches can be designed to sense in the cell either the presence or the absence of disease indicative RNA(s) or small molecules, and to switch on or off the gene expression of any exogenous protein. In addition, the riboswitches can be engineered to induce RNA interference or microRNA pathways that can conditionally down regulate the expression of key proteins in the cell. That can prevent a disease’s development. Therefore, the presented synthetic riboswitches can be used as truly universal cellular biosensors. Nowadays, disease indicative RNA(s) can be precisely identified by employing next-generation sequencing technologies with high accuracy . The methods can be employed not only for exogenous control of gene expression but also for re-programming the cell fate, anticancer, and antiviral gene therapies. Such approaches may be employed as potent molecular medicines of the future.


2018 ◽  
Author(s):  
Brian S. Clark ◽  
Genevieve L. Stein-O’Brien ◽  
Fion Shiau ◽  
Gabrielle H. Cannon ◽  
Emily Davis ◽  
...  

SUMMARYPrecise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the extensive cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single cell RNA-sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each of the major retinal cell types. These data identify transitions in gene expression between early and late-stage retinal progenitors, as well as a classification of neurogenic progenitors. We identify here the NFI family of transcription factors (Nfia, Nfib, and Nfix) as genes with enriched expression within late RPCs, and show they are regulators of bipolar interneuron and Müller glia specification and the control of proliferative quiescence.


2020 ◽  
Author(s):  
Thomas G Minchington ◽  
Sam Griffiths-Jones ◽  
Nancy Papalopulu

AbstractConcepts from dynamical systems theory, including multi-stability, oscillations, robustness and stochasticity, are increasingly implicated in the control of gene expression during cell fate decisions, inflammation and stem cell heterogeneity. However, the prevalence of the underlying structures within gene networks which drive these dynamical behaviours, such as direct autoregulation or feedback by microRNAs, is unknown.We integrate transcription factor binding site (TFBS) and microRNA target data to generate a gene interaction network across 28 human tissues. This network was interrogated to identify network motifs capable of driving dynamical gene expression, in particular oscillations. Autoregulatory motifs were identified in 56% of transcription factors (TFs) investigated, 89% of which were also found in dual feedback motifs with a microRNA. Both the autoregulatory and dual feedback motifs were enriched in the network. TFs that autoregulate were found to be highly conserved between tissues. Dual feedback motifs with microRNAs were also conserved, but less so. Such dual feedback motifs were conserved between tissues, although TFs regulate different combinations of microRNAs in a tissue-dependent manner.TFs which autoregulate are prevalent among human TFs and have more interactions with microRNAs than non-autoregulatory genes. The enrichment of such motifs within the human transcriptional network indicates that more genes may have interesting expression dynamics than previously thought. These data provide a resource for the identification of TFs which regulate the dynamical properties of human gene expression. These findings support the development of dynamical conceptual frameworks for the study of fundamental biological processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mika J. Välimäki ◽  
Robert S. Leigh ◽  
Sini M. Kinnunen ◽  
Alexander R. March ◽  
Ana Hernández de Sande ◽  
...  

AbstractBackgroundPharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration.MethodsTranscription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.ResultsGATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression.ConclusionsCollectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


2021 ◽  
Author(s):  
Pengcheng Ma ◽  
Xingyan Liu ◽  
Huimin Liu ◽  
Zaoxu Xu ◽  
Xiangning Ding ◽  
...  

Abstract Vertebrate evolution was accompanied with two rounds of whole genome duplication followed by functional divergence in terms of regulatory circuits and gene expression patterns. As a basal and slow-evolving chordate species, amphioxus is an ideal paradigm for exploring the origin and evolution of vertebrates. Single cell sequencing has been widely employed to construct the developmental cell atlas of several key species of vertebrates (human, mouse, zebrafish and frog) and tunicate (sea squirts). Here, we performed single-nucleus RNA sequencing (snRNA-seq) and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) for different stages of amphioxus (covering embryogenesis and adult tissues). With the datasets generated we constructed the developmental tree for amphioxus cell fate commitment and lineage specification, and revealed the underlying key regulators and genetic regulatory networks. The generated data were integrated into an online platform, AmphioxusAtlas, for public access at http://120.79.46.200:81/AmphioxusAtlas.


2021 ◽  
Author(s):  
Yuchi Qiu ◽  
Lianna Fung ◽  
Thomas F. Schilling ◽  
Qing Nie

ABSTRACTThe vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately-sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development.Author SummaryIn segmental pattern formation, chemical gradients control gene expression in a concentration-dependent manner to specify distinct gene expression domains. Despite the stochasticity inherent to such biological processes, precise and accurate borders form between segmental gene expression domains. Previous work has revealed synergy between gene regulation and cell sorting in sharpening borders that are initially rough. However, it is still poorly understood how size and boundary sharpness ofmultiplesegments are regulated in a tissue that changes dramatically in its morphology as the embryo develops. Here we develop a stochastic multiscale cell-base model to investigate these questions. Two novel strategies synergize to promote accurate segment formation, a combination of long- and short-range morphogens plus rapid tissue convergence, with one responsible for pattern initiation and the other enabling pattern refinement.


2020 ◽  
Vol 48 (5) ◽  
pp. 2205-2212
Author(s):  
Shaun Spisak ◽  
Marc Ostermeier

There is an ongoing need in the synthetic biology community for novel ways to regulate gene expression. Protein switches, which sense biological inputs and respond with functional outputs, represent one way to meet this need. Despite the fact that there is already a large pool of transcription factors and signaling proteins available, the pool of existing switches lacks the substrate specificities and activities required for certain applications. Therefore, a large number of techniques have been applied to engineer switches with novel properties. Here we discuss some of these techniques by broadly organizing them into three approaches. We show how novel switches can be created through mutagenesis, domain swapping, or domain insertion. We then briefly discuss their use as biosensors and in complex genetic circuits.


Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4245-4257 ◽  
Author(s):  
B. Biehs ◽  
M.A. Sturtevant ◽  
E. Bier

Previous studies have suggested that vein primordia in Drosophila form at boundaries along the A/P axis between discrete sectors of the larval wing imaginal disc. Genes involved in initiating vein development during the third larval instar are expressed either in narrow stripes corresponding to vein primordia or in broader ‘provein’ domains consisting of cells competent to become veins. In addition, genes specifying the alternative intervein cell fate are expressed in complementary intervein regions. The regulatory relationships between genes expressed in narrow vein primordia, in broad provein stripes and in interveins remains unknown, however. In this manuscript, we provide additional evidence for veins forming in narrow stripes at borders of A/P sectors. These experiments further suggest that narrow vein primordia produce secondary short-range signal(s), which activate expression of provein genes in a broad pattern in neighboring cells. We also show that crossregulatory interactions among genes expressed in veins, proveins and interveins contribute to establishing the vein-versus-intervein pattern, and that control of gene expression in vein and intervein regions must be considered on a stripe-by-stripe basis. Finally, we present evidence for a second set of vein-inducing boundaries lying between veins, which we refer to as paravein boundaries. We propose that veins develop at both vein and paravein boundaries in more ‘primitive’ insects, which have up to twice the number of veins present in Drosophila. We present a model in which different A/P boundaries organize vein-specific genetic programs to govern the development of individual veins.


1991 ◽  
Vol 11 (1) ◽  
pp. 558-563
Author(s):  
J J Loros ◽  
J C Dunlap

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these two morning-specific genes occurs at the level of transcription. This transcriptional regulation by the circadian clock provides a basis for isolating circadian rhythm mutants.


Sign in / Sign up

Export Citation Format

Share Document