Neurospora crassa clock-controlled genes are regulated at the level of transcription

1991 ◽  
Vol 11 (1) ◽  
pp. 558-563
Author(s):  
J J Loros ◽  
J C Dunlap

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these two morning-specific genes occurs at the level of transcription. This transcriptional regulation by the circadian clock provides a basis for isolating circadian rhythm mutants.

1991 ◽  
Vol 11 (1) ◽  
pp. 558-563 ◽  
Author(s):  
J J Loros ◽  
J C Dunlap

Although an extensive number of biological processes are under the daily control of the circadian biological clock, little is known about how the clock maintains its regulatory networks within a cell. An important aspect of this temporal control is the daily control of gene expression. Previously we identified two morning-specific genes that are regulated by the clock through daily control of gene expression (J. Loros, S. Denome, and J.C. Dunlap, Science 243:385-388, 1989). We have now introduced a method for transcriptional analysis in Neurospora crassa and used this nuclear run-on procedure to show that regulation of mRNA abundance for these two morning-specific genes occurs at the level of transcription. This transcriptional regulation by the circadian clock provides a basis for isolating circadian rhythm mutants.


2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.


2008 ◽  
Vol 72 (1) ◽  
pp. 197-210 ◽  
Author(s):  
Carlos Gancedo ◽  
Carmen-Lisset Flores

SUMMARY Proteins able to participate in unrelated biological processes have been grouped under the generic name of moonlighting proteins. Work with different yeast species has uncovered a great number of moonlighting proteins and shown their importance for adequate functioning of the yeast cell. Moonlighting activities in yeasts include such diverse functions as control of gene expression, organelle assembly, and modification of the activity of metabolic pathways. In this review, we consider several well-studied moonlighting proteins in different yeast species, paying attention to the experimental approaches used to identify them and the evidence that supports their participation in the unexpected function. Usually, moonlighting activities have been uncovered unexpectedly, and up to now, no satisfactory way to predict moonlighting activities has been found. Among the well-characterized moonlighting proteins in yeasts, enzymes from the glycolytic pathway appear to be prominent. For some cases, it is shown that despite close phylogenetic relationships, moonlighting activities are not necessarily conserved among yeast species. Organisms may utilize moonlighting to add a new layer of regulation to conventional regulatory networks. The existence of this type of proteins in yeasts should be taken into account when designing mutant screens or in attempts to model or modify yeast metabolism.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Neel Patel ◽  
William S. Bush

Abstract Background Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. Results We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. Conclusions Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation.


2013 ◽  
pp. 860-883
Author(s):  
Robert Penchovsky

Systems and synthetic biology promise to develop new approaches for analysis and design of complex gene expression regulatory networks in living cells with many practical applications to the pharmaceutical and biotech industries. In this chapter the development of novel universal strategies for exogenous control of gene expression is discussed. They are based on designer allosteric ribozymes that can function in the cell. The synthetic riboswitches are obtained by a patented computational procedure that provides fast and accurate modular designs with various Boolean logic functions. The riboswitches can be designed to sense in the cell either the presence or the absence of disease indicative RNA(s) or small molecules, and to switch on or off the gene expression of any exogenous protein. In addition, the riboswitches can be engineered to induce RNA interference or microRNA pathways that can conditionally down regulate the expression of key proteins in the cell. That can prevent a disease’s development. Therefore, the presented synthetic riboswitches can be used as truly universal cellular biosensors. Nowadays, disease indicative RNA(s) can be precisely identified by employing next-generation sequencing technologies with high accuracy . The methods can be employed not only for exogenous control of gene expression but also for re-programming the cell fate, anticancer, and antiviral gene therapies. Such approaches may be employed as potent molecular medicines of the future.


1998 ◽  
Vol 80 (4) ◽  
pp. 307-321
Author(s):  
John E. Hesketh ◽  
M. Helena Vasconcelos ◽  
Giovanna Bermano

Nutrition has marked influences on gene expression and an understanding of the interaction between nutrients and gene expression is important in order to provide a basis for determining the nutritional requirements on an individual basis. The effects of nutrition can be exerted at many stages between transcription of the genetic sequence and production of a functional protein. This review focuses on the role of post-transcriptional control, particularly mRNA stability, translation and localization, in the interactions of nutrients with gene expression. The effects of both macronutrients and micronutrients on regulation of gene expression by post-transcriptional mechanisms are presented and the post-transcriptional regulation of specific genes of nutritional relevance (glucose transporters, transferrin, selenoenzymes, metallothionein, lipoproteins) is described in detail. The function of the regulatory signals in the untranslated regions of the mRNA is highlighted in relation to control of mRNA stability, translation and localization and the importance of these mRNA regions to regulation by nutrients is illustrated by reference to specific examples. The localization of mRNA by signals in the untranslated regions and its function in the spatial organization of protein synthesis is described; the potential of such mechanisms to play a key part in nutrient channelling and metabolic compartmentation is discussed. It is concluded that nutrients can influence gene expression through control of the regulatory signals in these untranslated regions and that the post-transcriptional regulation of gene expression by these mechanisms may influence nutritional requirements. It is emphasized that in studies of nutritional control of gene expression it is important not to focus only on regulation through gene promoters but also to consider the possibility of post-transcriptional control.


2019 ◽  
Vol 2 (4) ◽  
pp. e00113 ◽  
Author(s):  
P.A. Bobrovsky ◽  
A.K. Larin ◽  
N.F. Polina ◽  
V.N. Lazarev

Human peptidoglycan recognition proteins (PGLYRPs) are the components of innate immunity that exhibit antibacterial activity. In this study a cell line secreting recombinant PGLYRP1 into a culture medium was obtained. Transcriptional profiling of cell lines expressing PGLYRP1 was performed at different stages of C. trachomatis infection. Differential gene expression was studied using the whole transcriptome profiling method on the HumanHT-12 v4 Expression BeadChip microchip using the Illumina Direct Hybridization Whole-Gene Expression Assay protocol. Sample clustering followed by bioinformatics analysis revealed about 100 differentially expressed genes in response to infection with C. trachomatis. PGLYRP1- expressing cells infected with C. trachomatis had a similar transcriptional profile as non-infected cells.


2020 ◽  
Author(s):  
Bryan C Jensen ◽  
Isabelle Q. Phan ◽  
Jacquelyn R. McDonald ◽  
Aakash Sur ◽  
Mark A. Gillespie ◽  
...  

AbstractUnlike most other eukaryotes, Leishmania and other trypanosomatid protozoa have largely eschewed transcriptional control of gene expression; relying instead on post-transcriptional regulation of mRNAs derived from polycistronic transcription units (PTUs). In these parasites, a novel modified nucleotide base (β-D-glucopyranosyloxymethyluracil) known as J plays a critical role in ensuring that transcription termination occurs only at the end of each PTU, rather than at the polyadenylation sites of individual genes. To further understand the biology of J-associated processes, we used tandem affinity purification (TAP-tagging) and mass spectrometry to reveal proteins that interact with the glucosyltransferase performing the final step in J synthesis. These studies identified four proteins reminiscent of subunits in the PTW/PP1 complex that controls transcription termination in higher eukaryotes. Moreover, bioinformatic analyses identified the DNA-binding subunit of Leishmania PTW/PP1 as a novel J-binding protein (JBP3). Down-regulation of JBP3 expression levels in Leishmania resulted in a substantial increase in transcriptional read-through at the 3’ end of most PTUs. Additional TAP-tagging experiments showed that JBP3 also associates with two other protein complexes. One consists of subunits with domains suggestive of a role in chromatin modification/remodeling; while the other contains subunits with similarity to those found in the PAF1 complex involved in regulation of transcription in other eukaryotes. Thus, trypanosomatids utilize protein complexes similar to those used to control transcription termination in other eukaryotes and JBP3 appears to function as a hub linking these modules to base J, thereby enabling the parasites’ unique reliance on polycistronic transcription and post-transcriptional regulation of gene expression.


Sign in / Sign up

Export Citation Format

Share Document