A Service-Oriented Approach towards Real Time Financial News Analysis

Author(s):  
Calum S. Robertson ◽  
Fethi A. Rabhi ◽  
Maurice Peat

In this paper we look at the difficulties which retail investors face to obtain all news which affects companies in their portfolio. We provide a high level overview of available financial news categories and sources, the different research strategies applied to the data, and the technical problems this raises. We propose a service-oriented system to enable real time financial news analysis which will reduce the time which the investor must spend searching for and interpreting relevant news.

Author(s):  
Yong Zhang ◽  
Shijun Liu ◽  
Yuchang Jiao ◽  
Yuqing Sun

Interoperability is an important issue in the supply chain management (SCM) systems that highly influence the productivity, especially in such complex automobile domain that many supplies take part in the activities and requirements are dynamically changed according to the market. In order to keep ahead in the competitive market, each enterprise in the supply chain should keep efficient interoperability with its partners. However, it is difficult for all of them to update their SCM systems in real time for collaboration especially for some small suppliers due to the expensive maintenance and complex technologies. In this paper, we propose a service-oriented approach to solve the above problem by providing an integrated platform, where interoperability is considered as utility-like capability and delivered in the form of Software as a Service (SaaS). Each enterprise in a supply chain could establish the interoperation activities with other partners in this platform and thus they could efficiently collaborate. We illustrate in detail how two SaaS-typed applications interact with each other.


2012 ◽  
pp. 765-779
Author(s):  
Yong Zhang ◽  
Shijun Liu ◽  
Yuchang Jiao ◽  
Yuqing Sun

Interoperability is an important issue in the supply chain management (SCM) systems that highly influence the productivity, especially in such complex automobile domain that many supplies take part in the activities and requirements are dynamically changed according to the market. In order to keep ahead in the competitive market, each enterprise in the supply chain should keep efficient interoperability with its partners. However, it is difficult for all of them to update their SCM systems in real time for collaboration especially for some small suppliers due to the expensive maintenance and complex technologies. In this paper, we propose a service-oriented approach to solve the above problem by providing an integrated platform, where interoperability is considered as utility-like capability and delivered in the form of Software as a Service (SaaS). Each enterprise in a supply chain could establish the interoperation activities with other partners in this platform and thus they could efficiently collaborate. We illustrate in detail how two SaaS-typed applications interact with each other.


Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 68
Author(s):  
Mankyu Sung

This paper proposes a graph-based algorithm for constructing 3D Korean traditional houses automatically using a computer graphics technique. In particular, we target designing the most popular traditional house type, a giwa house, whose roof is covered with a set of Korean traditional roof tiles called giwa. In our approach, we divided the whole design processes into two different parts. At a high level, we propose a special data structure called ‘modeling graphs’. A modeling graph consists of a set of nodes and edges. A node represents a particular component of the house and an edge represents the connection between two components with all associated parameters, including an offset vector between components. Users can easily add/ delete nodes and make them connect by an edge through a few mouse clicks. Once a modeling graph is built, then it is interpreted and rendered on a component-by-component basis by traversing nodes in a procedural way. At a low level, we came up with all the required parameters for constructing the components. Among all the components, the most beautiful but complicated part is the gently curved roof structures. In order to represent the sophisticated roof style, we introduce a spline curve-based modeling technique that is able to create curvy silhouettes of three different roof styles. In this process, rather than just applying a simple texture image onto the roof, which is widely used in commercial software, we actually laid out 3D giwa tiles on the roof seamlessly, which generated more realistic looks. Through many experiments, we verified that the proposed algorithm can model and render the giwa house at a real time rate.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3956
Author(s):  
Youngsun Kong ◽  
Hugo F. Posada-Quintero ◽  
Ki H. Chon

The subjectiveness of pain can lead to inaccurate prescribing of pain medication, which can exacerbate drug addiction and overdose. Given that pain is often experienced in patients’ homes, there is an urgent need for ambulatory devices that can quantify pain in real-time. We implemented three time- and frequency-domain electrodermal activity (EDA) indices in our smartphone application that collects EDA signals using a wrist-worn device. We then evaluated our computational algorithms using thermal grill data from ten subjects. The thermal grill delivered a level of pain that was calibrated for each subject to be 8 out of 10 on a visual analog scale (VAS). Furthermore, we simulated the real-time processing of the smartphone application using a dataset pre-collected from another group of fifteen subjects who underwent pain stimulation using electrical pulses, which elicited a VAS pain score level 7 out of 10. All EDA features showed significant difference between painless and pain segments, termed for the 5-s segments before and after each pain stimulus. Random forest showed the highest accuracy in detecting pain, 81.5%, with 78.9% sensitivity and 84.2% specificity with leave-one-subject-out cross-validation approach. Our results show the potential of a smartphone application to provide near real-time objective pain detection.


2021 ◽  
Vol 15 (2) ◽  
pp. 1-25
Author(s):  
Amal Alhosban ◽  
Zaki Malik ◽  
Khayyam Hashmi ◽  
Brahim Medjahed ◽  
Hassan Al-Ababneh

Service-Oriented Architectures (SOA) enable the automatic creation of business applications from independently developed and deployed Web services. As Web services are inherently a priori unknown, how to deliver reliable Web services compositions is a significant and challenging problem. Services involved in an SOA often do not operate under a single processing environment and need to communicate using different protocols over a network. Under such conditions, designing a fault management system that is both efficient and extensible is a challenging task. In this article, we propose SFSS, a self-healing framework for SOA fault management. SFSS is predicting, identifying, and solving faults in SOAs. In SFSS, we identified a set of high-level exception handling strategies based on the QoS performances of different component services and the preferences articled by the service consumers. Multiple recovery plans are generated and evaluated according to the performance of the selected component services, and then we execute the best recovery plan. We assess the overall user dependence (i.e., the service is independent of other services) using the generated plan and the available invocation information of the component services. Due to the experiment results, the given technique enhances the service selection quality by choosing the services that have the highest score and betters the overall system performance. The experiment results indicate the applicability of SFSS and show improved performance in comparison to similar approaches.


Author(s):  
Vassili N. Kolokoltsov

AbstractQuantum games represent the really twenty-first century branch of game theory, tightly linked to the modern development of quantum computing and quantum technologies. The main accent in these developments so far was made on stationary or repeated games. In this paper, we aim at initiating the truly dynamic theory with strategies chosen by players in real time. Since direct continuous observations are known to destroy quantum evolutions (so-called quantum Zeno paradox), the necessary new ingredient for quantum dynamic games must be the theory of non-direct observations and the corresponding quantum filtering. Apart from the technical problems in organizing feedback quantum control in real time, the difficulty in applying this theory for obtaining mathematically amenable control systems is due partially to the fact that it leads usually to rather non-trivial jump-type Markov processes and/or degenerate diffusions on manifolds, for which the corresponding control is very difficult to handle. The starting point for the present research is the remarkable discovery (quite unexpected, at least to the author) that there exists a very natural class of homodyne detections such that the diffusion processes on projective spaces resulting by filtering under such arrangements coincide exactly with the standard Brownian motions (BM) on these spaces. In some cases, one can even reduce the process to the plain BM on Euclidean spaces or tori. The theory of such motions is well studied making it possible to develop a tractable theory of related control and games, which can be at the same time practically implemented on quantum optical devices.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 627
Author(s):  
David Marquez-Viloria ◽  
Luis Castano-Londono ◽  
Neil Guerrero-Gonzalez

A methodology for scalable and concurrent real-time implementation of highly recurrent algorithms is presented and experimentally validated using the AWS-FPGA. This paper presents a parallel implementation of a KNN algorithm focused on the m-QAM demodulators using high-level synthesis for fast prototyping, parameterization, and scalability of the design. The proposed design shows the successful implementation of the KNN algorithm for interchannel interference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. Additionally, we present a modified version of the KNN algorithm in which comparisons among data symbols are reduced by identifying the closest neighbor using the rule of the 8-connected clusters used for image processing. Real-time implementation of the modified KNN on a Xilinx Virtex UltraScale+ VU9P AWS-FPGA board was compared with the results obtained in previous work using the same data from the same experimental setup but offline DSP using Matlab. The results show that the difference is negligible below FEC limit. Additionally, the modified KNN shows a reduction of operations from 43 percent to 75 percent, depending on the symbol’s position in the constellation, achieving a reduction 47.25% reduction in total computational time for 100 K input symbols processed on 20 parallel cores compared to the KNN algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


Sign in / Sign up

Export Citation Format

Share Document