Non-Parametric Stakeholder Discovery

Author(s):  
John Benjamin Cassel

This chapter provides a stakeholder discovery model for distributed risk governance suitable to machine learning and decision-theoretic planning. Distributed risk governance concerns when the underlying risk is not localized or has unknown locality so that any initial interaction with stakeholders is limited and educational and participatory initiatives are costly. Therefore, expecting the initial reaction to communications is critical. To capture this initial reaction, the authors sample the population of potential stakeholders to discover both their concerns and knowledge while handling inaccuracies and contradictions. This chapter provides a stakeholder discovery model that can accommodate these inconsistencies. Stakeholder discovery provides a timely strategic assessment of the risk situation. This assessment forecasts projected stakeholder actions to find if those actions are in line with their strategic interests or if there are better choices using reinforcement learning. Unlike other reinforcement learning formulations, it does not take the state space, criteria, potential observations, other agents, actions, or rewards for granted, but discovers these factors non-parametrically. Overall, this chapter introduces machine learning researchers and risk governance professionals to the compatibility between non-parametric models and early-stage stakeholder discovery problems and addresses widely known biases and deficits within risk governance and intelligence practices.

2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Jonathan Huang ◽  
Xiang Meng

Abstract Background Flexible, data-adaptive algorithms (machine learning; ML) for nuisance parameter estimation in epidemiologic causal inference have promising asymptotic properties for complex, high-dimensional data. However, recently proposed applications (e.g. targeted maximum likelihood estimation; TMLE) may produce biases parameter and standard error estimates in common real-world cohort settings. The relative performance of these novel estimators over simpler approaches in such settings is unclear. Methods We apply double-crossfit TMLE, augmented inverse probability weighting (AIPW), and standard IPW to simple simulations (5 covariates) and “real-world” data using covariate-structure-preserving (“plasmode”) simulations of 1,178 subjects and 331 covariates from a longitudinal birth cohort. We evaluate various data generating and estimation scenarios including: under- and over- (e.g. excess orthogonal covariates) identification, poor data support, near-instruments, and mis-specified biological interactions. We also track representative computation times. Results We replicate optimal performance of cross-fit, doubly robust estimators in simple data generating processes. However, in nearly every real world-based scenario, estimators fit with parametric learners outperform those that include non-parametric learners in terms of mean bias and confidence interval coverage. Even when correctly specified, estimators fit with non-parametric algorithms (xgboost, random forest) performed poorly (e.g. 24% bias, 57% coverage vs. 10% bias, 79% coverage for parametric fit), at times underperforming simple IPW. Conclusions In typical epidemiologic data sets, double-crossfit estimators fit with simple smooth, parametric learners may be the optimal solution, taking 2-5 times less computation time than flexible non-parametric models, while having equal or better performance. No approaches are optimal, and estimators should be compared on simulations close to the source data. Key messages In epidemiologic studies, use of flexible non-parametric algorithms for effect estimation should be strongly justified (i.e. high-dimensional covariates) and performed with care. Parametric learners may be a safer option with few drawbacks.


2018 ◽  
Vol 1 (1) ◽  
pp. 236-247
Author(s):  
Divya Srivastava ◽  
Rajitha B. ◽  
Suneeta Agarwal

Diseases in leaves can cause the significant reduction in both quality and quantity of agricultural production. If early and accurate detection of disease/diseases in leaves can be automated, then the proper remedy can be taken timely. A simple and computationally efficient approach is presented in this paper for disease/diseases detection on leaves. Only detecting the disease is not beneficial without knowing the stage of disease thus the paper also determine the stage of disease/diseases by quantizing the affected of the leaves by using digital image processing and machine learning. Though there exists a variety of diseases on leaves, but the bacterial and fungal spots (Early Scorch, Late Scorch, and Leaf Spot) are the most prominent diseases found on leaves. Keeping this in mind the paper deals with the detection of Bacterial Blight and Fungal Spot both at an early stage (Early Scorch) and late stage (Late Scorch) on the variety of leaves. The proposed approach is divided into two phases, in the first phase, it identifies one or more disease/diseases existing on leaves. In the second phase, amount of area affected by the disease/diseases is calculated. The experimental results obtained showed 97% accuracy using the proposed approach.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Lucas Lamata

Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.


2021 ◽  
pp. 027836492098785
Author(s):  
Julian Ibarz ◽  
Jie Tan ◽  
Chelsea Finn ◽  
Mrinal Kalakrishnan ◽  
Peter Pastor ◽  
...  

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn: as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.


Sign in / Sign up

Export Citation Format

Share Document