scholarly journals Application of Nanoparticles as a Drug Delivery System

2017 ◽  
pp. 128-153
Author(s):  
Vijay Kumar Singh ◽  
Raj K. Keservani

Small colloidal particles having their diameter in the range of 50 to 500nm are defined as Nanoparticles. These are usually prepared either by using biodegradable or non-biodegradable polymers and are usually classified in two broad categories: (1) Nanocapsules: a type of reservoir system in which an oil or aqueous core is surrounded by a polymeric membrane. (2) Nanospheres: a type of matrix system. Preparation of nanoparticle as a drug delivery system is one of the most widely accepted approach since the prepration of nanoparticle were easy and convenient to scale up. Their high stability and conveniently easy to freeze-dried their preparations provide some additional advantages to choose Nanoparticles as a good drug delivery system. Inspite of them Nanoparticles were were able to achieve with success tissue targeting of many drugs (antibiotics, cytostatics, peptides and proteins, nucleic acids, etc.).

2017 ◽  
pp. 1358-1383
Author(s):  
Vijay Kumar Singh ◽  
Raj K. Keservani

Small colloidal particles having their diameter in the range of 50 to 500nm are defined as Nanoparticles. These are usually prepared either by using biodegradable or non-biodegradable polymers and are usually classified in two broad categories: (1) Nanocapsules: a type of reservoir system in which an oil or aqueous core is surrounded by a polymeric membrane. (2) Nanospheres: a type of matrix system. Preparation of nanoparticle as a drug delivery system is one of the most widely accepted approach since the preparation of nanoparticle were easy and convenient to scale up. Their high stability and conveniently easy to freeze-dried their preparations provide some additional advantages to choose Nanoparticles as a good drug delivery system. In spite of them Nanoparticles were able to achieve with success tissue targeting of many drugs (antibiotics, cytostatics, peptides and proteins, nucleic acids, etc.).


Author(s):  
Vijay Kumar Singh ◽  
Raj K. Keservani

Small colloidal particles having their diameter in the range of 50 to 500nm are defined as Nanoparticles. These are usually prepared either by using biodegradable or non-biodegradable polymers and are usually classified in two broad categories: (1) Nanocapsules: a type of reservoir system in which an oil or aqueous core is surrounded by a polymeric membrane. (2) Nanospheres: a type of matrix system. Preparation of nanoparticle as a drug delivery system is one of the most widely accepted approach since the prepration of nanoparticle were easy and convenient to scale up. Their high stability and conveniently easy to freeze-dried their preparations provide some additional advantages to choose Nanoparticles as a good drug delivery system. Inspite of them Nanoparticles were were able to achieve with success tissue targeting of many drugs (antibiotics, cytostatics, peptides and proteins, nucleic acids, etc.).


Author(s):  
Prabhat Kumar Sahoo ◽  
Neha S.L ◽  
Arzoo Pannu

Lipids are used as vehicles for the preparation of various formulations prescribed for administrations, including emulsions, ointments, suspension, tablets, and suppositories. The first parental nano-emulsion was discovered from the 1950s when it was added to the intravenous administration of lipid and lipid-soluble substances. Lipid-based drug delivery systems are important nowadays. Solid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) are very proficient due to the ease of production process, scale-up capability, bio-compatibility, the biodegradability of formulation components and other specific features of the proposed route. The administration or nature of the materials must be loaded into these delivery systems. The main objectives of this review are to discuss an overview of second-generation nanoparticles, their limitations, structures, and route of administration, with emphasis on the effectiveness of such formulations. NLC is the second generation of lipid nanoparticles having a structure like nanoemulsion. The first generation of nanoparticles was SLN. The difference between both of them is at its core. Both of them are a colloidal carrier in submicron size in the range of 40-1000 nm. NLC is the most promising novel drug delivery system over the SLN due to solving the problem of drug loading and drug crystallinity. Solid and liquid lipids combination in NLC formation, improve its quality as compare to SLN. NLC has three types of structures: random, amorphous, and multiple. The random structure containing solid-liquid lipids and consisting crystal and the liquid lipid irregular in shape; thereby enhance the ability of the lipid layer to pass through the membrane. The second is the amorphous structure. It is less crystalline in nature and can prevent the leakage of the loaded drug. The third type is multiple structures, which have higher liquid lipid concentrations than other types. The excipients used to form the NLC are bio-compatible, biodegradable and non-irritating, most of which can be detected using GRAS. NLC is a promising delivery system to deliver the drug through pulmonary, ocular, CNS, and oral route of administration. Various methods of preparation and composition of NLC influence its stability Parameters. In recent years at the educational level, the potential of NLC as a delivery mechanism targeting various organs has been investigated in detail.


2018 ◽  
Vol 10 (2) ◽  
pp. 1 ◽  
Author(s):  
Revathy B. Menon ◽  
Lakshmi V. S. ◽  
Aiswarya M. U. ◽  
Keerthana Raju ◽  
Sreeja C. Nair

A novel drug delivery system is the one that ensures optimum dose at the right time, at the right location. Porphysomes are among those drug delivery systems. Porphysomes are a means of vesicular drug delivery systems. They are liposome-like structures composed completely of porphyrin lipid. The porphysomes encapsulates the active medicament in vesicular structure. They are having an aqueous core which can be loaded with the medicament. They have the capacity to destroy the disease tissues. They absorb the heat in the near infrared region and release this heat to destroy the diseased tissues. Porphysomes are having immense applications in the field of positron-electron therapy (PET), photoacoustic imaging, photothermal therapy etc. This review article discusses regarding the Porphysome-the drug delivery system, its advantages and disadvantages, composition, method of preparation, applications and various aspects related to the porphysomal drug delivery.


2019 ◽  
Vol 31 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Sabitri Bindhani ◽  
S. Mohapatra ◽  
R.K. Kar

In recent years, nearly 40 % newer drugs compounds are hydrophobic in nature, which is a major challenge now-a-days for oral drug delivering due to low aqueous solubility. Lipid based drug delivery system is one of the favourable approach for poorly soluble compounds which can improve the drug absorption and oral bioavailability. Due to ion-pairing with appropriate surfactant and co-surfactant the macromolecular drug molecular oil droplet being found in the gut flow oral absorption which sufficiently stable towards lipase. Due to the formation of emulsified drug in micron level, it can efficiently endow the oral bioavailability. Several comprehensive papers have been published in the literature illustration diverse type of lipid based formulation with recent advancements. This article is based on an exhaustive and updated review on newer technology which out line an explicit discussion on its formulations and industrial scale up.


2020 ◽  
Vol 10 (2) ◽  
pp. 150-165 ◽  
Author(s):  
Iti Chauhan ◽  
Mohd Yasir ◽  
Madhu Verma ◽  
Alok Pratap Singh

Nanostructured lipid carriers (NLCs) are novel pharmaceutical formulations which are composed of physiological and biocompatible lipids, surfactants and co-surfactants. Over time, as a second generation lipid nanocarrier NLC has emerged as an alternative to first generation nanoparticles. This review article highlights the structure, composition, various formulation methodologies, and characterization of NLCs which are prerequisites in formulating a stable drug delivery system. NLCs hold an eminent potential in pharmaceuticals and cosmetics market because of extensive beneficial effects like skin hydration, occlusion, enhanced bioavailability, and skin targeting. This article aims to evoke an interest in the current state of art NLC by discussing their promising assistance in topical drug delivery system. The key attributes of NLC that make them a promising drug delivery system are ease of preparation, biocompatibility, the feasibility of scale up, non-toxicity, improved drug loading, and stability.


2021 ◽  
Author(s):  
Xing Qin ◽  
Limei Qin ◽  
Jianping He ◽  
Qinghua Wang ◽  
Yongsheng Li ◽  
...  

An ideal drug delivery system is required to have high stability to ensure effective circulation and passive aggregation, good retention performance, and dynamic delivery and treatment monitoring. Thus, developing a...


Sign in / Sign up

Export Citation Format

Share Document