Fuzzy Logic and Condition Monitoring of Machinery Plant Equipment

The development of fuzzy logic in the companies mentioned by the authors is meant to automate the plant adaptively. The goal is to reduce downtimes in the plant, and hence, the framework done by the researchers will solve the problems by making the plant intelligent. Fuzzy logic is human concept, potentially applicable to a wide range of processes and tasks that require human intuition and experience. In computer, truth values are either 1 or 0, which correspond to true/false duality. In fuzzy logic, truth is the matter of degree, thus truth-values range between 1 and 0 in a continuous manner. Fuzzy logic is a method for representing information in a way that resembles natural human communication.

Author(s):  
Michael Denton

Condition monitoring of plant machinery is becoming more common place. With new advanced signal processing algorithms and better machine life models proactive maintenance of citrus processing machinery allows avoiding unplanned downtime and catastrophic failure. It also avoids relying only on predictions and assuming the machine will break. This paper will discuss the main steps that are necessary in developing a plant machinery maintenance system and make a business case for implementing machine monitoring on a wide range of plant equipment. Paper published with permission.


This book explores the value for literary studies of relevance theory, an inferential approach to communication in which the expression and recognition of intentions plays a major role. Drawing on a wide range of examples from lyric poetry and the novel, nine of the ten chapters are written by literary specialists and use relevance theory both as an overall framework and as a resource for detailed analysis. The final chapter, written by the co-founder of relevance theory, reviews the issues addressed by the volume and explores their implications for cognitive theories of how communicative acts are interpreted in context. Originally designed to explain how people understand each other in everyday face-to-face exchanges, relevance theory—described in an early review by a literary scholar as ‘the makings of a radically new theory of communication, the first since Aristotle’s’—sheds light on the whole spectrum of human modes of communication, including literature in the broadest sense. Reading Beyond the Code is unique in using relevance theory as a prime resource for literary study, and is also the first to apply the model to a range of phenomena widely seen as supporting an ‘embodied’ conception of cognition and language where sensorimotor processes play a key role. This broadened perspective serves to enhance the value for literary studies of the central claim of relevance theory: that the ‘code model’ is fundamentally inadequate to account for human communication, and in particular for the modes of communication that are proper to literature.


Author(s):  
Mehdi Karimimalayer ◽  
Nizaroyani Saibani

In our age of perennial changing environment, supply chain agility is a crucial factor having a great impact on the company's competitiveness. For transforming supply chain into an agile supply chain, first it is necessary to comprehend the meaning of agile supply chain, since agility has wide range of meanings and various dimensions which covers different aspects of an organization. Generally, however, there have been many researches on agility, proportionally; the concept of agility in supply chain has not been much surveyed. The circumstance unveils the necessity of a technique to measure the supply chain agility. The purpose of the article is to propose a technique, using fuzzy logic which supply chain agility be measured.


2021 ◽  
Vol 7 ◽  
pp. e638
Author(s):  
Md Nahidul Islam ◽  
Norizam Sulaiman ◽  
Fahmid Al Farid ◽  
Jia Uddin ◽  
Salem A. Alyami ◽  
...  

Hearing deficiency is the world’s most common sensation of impairment and impedes human communication and learning. Early and precise hearing diagnosis using electroencephalogram (EEG) is referred to as the optimum strategy to deal with this issue. Among a wide range of EEG control signals, the most relevant modality for hearing loss diagnosis is auditory evoked potential (AEP) which is produced in the brain’s cortex area through an auditory stimulus. This study aims to develop a robust intelligent auditory sensation system utilizing a pre-train deep learning framework by analyzing and evaluating the functional reliability of the hearing based on the AEP response. First, the raw AEP data is transformed into time-frequency images through the wavelet transformation. Then, lower-level functionality is eliminated using a pre-trained network. Here, an improved-VGG16 architecture has been designed based on removing some convolutional layers and adding new layers in the fully connected block. Subsequently, the higher levels of the neural network architecture are fine-tuned using the labelled time-frequency images. Finally, the proposed method’s performance has been validated by a reputed publicly available AEP dataset, recorded from sixteen subjects when they have heard specific auditory stimuli in the left or right ear. The proposed method outperforms the state-of-art studies by improving the classification accuracy to 96.87% (from 57.375%), which indicates that the proposed improved-VGG16 architecture can significantly deal with AEP response in early hearing loss diagnosis.


Author(s):  
M.Z. Ismail ◽  
M.H.N. Talib ◽  
Z. Ibrahim ◽  
J. Mat Lazi ◽  
Z. Rasin

<span>Fuzzy logic controller (FLC) has shown excellent performance in dealing with the non-linearity and complex dynamic model of the induction motor. However, a conventional constant parameter FLC (CPFL) will not be able to provide–good coverage performance for a wide speed range operation with a single tuning parameter. Therefore, this paper proposed a self tuning mechanism FLC approach by model reference adaptive controller (ST-MRAC) to continuously allow to adjust the parameters. Due to real time hardware application, the dominant rules selection method for simplified rules has been implemented as part of the reducing computational burden. Experiment results validate a good performance of the ST-MRAC compared to the CPFL for the   speed performance in terms of the wide range of operations and disturbance showed remarkable performance.</span>


2022 ◽  
pp. 165-182
Author(s):  
Emma Yann Zhang

With advances in HCI and AI, and increasing prevalence of commercial social robots and chatbots, humans are communicating with computer interfaces for various applications in a wide range of settings. Kissenger is designed to bring HCI to the populist masses. In order to investigate the role of robotic kissing using the Kissenger device in HCI, the authors conducted a modified version of the imitation game described by Alan Turing by including the use of the kissing machine. Results show that robotic kissing has no effect on the winning rates of the male and female players during human-human communication, but it increases the winning rate of the female player when a chatbot is involved in the game.


2017 ◽  
Vol 29 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Muhammad Aamir ◽  
Izhar Izhar ◽  
Muhammad Waqas ◽  
Muhammad Iqbal ◽  
Muhammad Imran Hanif ◽  
...  

Purpose This paper aims to develop a fuzzy logic-based algorithm to predict the intermetallic compound (IMC) size and mechanical properties of soldering material, Sn96.5-Ag3.0-Cu0.5 (SAC305) alloy, at different levels of temperature. The reliability of solder joint in materials selection is critical in terms of temperature, mechanical properties and environmental aspects. Owing to a wide range of soldering materials available, the selection space finds a fuzzy characteristic. Design/methodology/approach The developed algorithm takes thermal aging temperature for SAC305 alloy as input and converts it into fuzzy domain. These fuzzified values are then subjected to a fuzzy rule base, where a set of rules determines the IMC size and mechanical properties, such as yield strength (YS) and ultimate tensile strength (UTS) of SAC305 alloy. The algorithm is successfully simulated for various input thermal aging temperatures. To analyze and validate the developed algorithm, an SAC305 lead (Pb)-free solder alloy is developed and thermally aged at 40, 60 and 100°C temperature. Findings The experimental results indicate an average IMCs size of 5.967 (in Pixels), 19.850 N/mm2 YS and 22.740 N/mm2 UTS for SAC305 alloy when thermally aged at an elevated temperature of 140°C. In comparison, the simulation results predicted 5.895 (in Pixels) average IMCs size, 19.875 N/mm2 YS and 22.480 N/mm2 UTS for SAC305 alloy at 140°C thermally aged temperature. Originality/value From the experimental and simulated results, it is evident that the fuzzy-based developed algorithm can be used effectively to predict the IMCs size and mechanical properties of SAC305 at various aging temperatures, for the first time.


1994 ◽  
Vol 28 (1) ◽  
pp. 68-81 ◽  
Author(s):  
Robert Langs ◽  
Anthony Badalamenti

The search for a science of psychoanalysis is introduced by defining three modes of psychoanalytic science: domain, statistical-stochastic, and formal. The paper outlines the domain science propositions of the communicative approach to psychoanalytic psychotherapy and indicates how this version of psychoanalytic theory led to the development of an extensive series of statistical-stochastic and formal science studies of the communications between patients and therapists. The formal science efforts which began as a mathematical search for chaotic attractors revealed instead a deep determinism within the psychotherapeutic dialogue. Three specific laws of the mind and human communication have been identified. The research is centred on how we communicate (the communicative vehicle) rather than what we express (the contents). After describing a wide range of unexpected and unprecedented results, the paper concludes with a discussion of some of the clinical implications of these findings and of the new formal science of psychoanalysis created by these investigations.


1998 ◽  
Vol 120 (1) ◽  
pp. 95-101 ◽  
Author(s):  
O. K. Rediniotis ◽  
G. Chrysanthakopoulos

The theory and techniques of Artificial Neural Networks (ANN) and Fuzzy Logic Systems (FLS) are applied toward the formulation of accurate and wide-range calibration methods for such flow-diagnostics instruments as multi-hole probes. Besides introducing new calibration techniques, part of the work’s objective is to: (a) apply fuzzy-logic methods to identify systems whose behavior is described in a “crisp” rather than a “linguistic” framework and (b) compare the two approaches, i.e., neural network versus fuzzy logic approach, and their potential as universal approximators. For the ANN approach, several network configurations were tried. A Multi-Layer Perceptron with a 2-node input layer, a 4-node output layer and a 7-node hidden/middle layer, performed the best. For the FLS approach, a system with center average defuzzifier, product-inference rule, singleton fuzzifier, and Gaussian membership functions was employed. The Fuzzy Logic System seemed to outperform the Neural Network/Multi-Layer Perceptron.


Sign in / Sign up

Export Citation Format

Share Document