An Introduction to LiFi and Review of Prototypes Designed on FPGA and Other Hardware

Author(s):  
Faisal Khan Khaskheli ◽  
Fahim Aziz Umrani ◽  
Attiya Baqai

The current wireless networks are highly deficient when it comes to catering to the needs of the modern world with applications such as IoT and online interactive gaming. LiFi (visible light communication) has attracted interest as a solution to this problem due to its high data rate, wider spectrum, low power consumption, higher security, lower cost, and immunity to EMI. The idea behind LiFi is to use LED lights already available for space lighting for the purpose of transmitting. The chapter begins with a brief introduction to LiFI and then takes the reader through the history and market status of the technology all the way through to popular modulation techniques and finally ends with summarizing the transceiver prototypes designed previously with special emphasis on FPGA-based prototypes. The chapter provides a starting point for young budding researchers interested in LiFi and its implementation.

Author(s):  
Faheem Ahmad ◽  
Sathisha Ramachandrapura ◽  
Jyothsna KM ◽  
Rabindra Biswas ◽  
Varun Raghunathan

2019 ◽  
Vol 9 (19) ◽  
pp. 4004
Author(s):  
Hesham Sadat ◽  
Mohamed Abaza ◽  
Safa M. Gasser ◽  
Hesham ElBadawy

Nowadays, visible light communication (VLC) systems have become one of the candidate technologies for high data rate indoor communications. However, the main challenge to develop a high data rate VLC system is the narrow modulation bandwidth of light-emitting diodes (LEDs). Power domain non-orthogonal multiple access (PD-NOMA) is a promising scheme to enhance the spectral efficiency of downlink VLC systems. In this paper, we introduce cooperative PD-NOMA to the system to improve the signal reception for the far users. We evaluate the bit error rate (BER) and achievable rate performance of non-cooperative and cooperative PD-NOMA under perfect channel state information (CSI). Moreover, we drive analytic expressions for the BER and provide a Monte Carlo simulation results for verifying the validity of the derived analytical BER results. The results show that cooperative PD-NOMA outperforms non-cooperative PD-NOMA by 8.2 dB at BER 10−6 and by achievable rate 14.1 bit/s/Hz at 45 dB in a two-user scenario.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaeista Begum ◽  
Nagaraj B. Patil

AbstractA visible light communication (VLC) provides potential and effective communication paradigm due to the demand of high data-rate applications. VLC networks, consisting of multiple light emitting diodes (LEDs) and it provides the low-cost high data-rate transmission to multiple users simultaneously in indoor environments. VLC has been recently introduced as a secure directional data transmission in vehicle to vehicle to provide an intelligent vehicle control system. However, the performance of this system is mostly affected by the collision of data transmission between different users. In this paper, we introduce an optimal visible light communication (OVLC) network that allows vehicles which have provides collision aware data transmission to improve the chance of transmitting information successively according to the network condition. Firstly, the next forwarding node is selected by the chaotic fish swarm optimization (CFSO) algorithm with the help of vehicle information’s such as intensity of light, the distance and speed of neighboring vehicles. The second contribution is to illustrate the congestion control (CC) system for avoiding extra time due to the control packets exchange process. The optimal result is then forward to the source vehicle equipped device, which helps the driver to make a healthy to control vehicle and efficiently avoid or prevent road accidents under different circumstances. The results show that the proposed OVLC network performs very efficient than existing network in terms of quality metrics, such as throughput, delay, packet loss rate, energy consumption and fairness index.


2014 ◽  
Vol 60 (2) ◽  
pp. 193-198
Author(s):  
M. Yousefi ◽  
D. Koozehkanani ◽  
H. Jangi ◽  
N. Nasirzadeh ◽  
J. Sobhi

Abstract A 400 MHz high efficiency transmitter for wireless medical application is presented in this paper. Transmitter architecture with high-energy efficiencies is proposed to achieve high data rate with low power consumption. In the on-off keying transmitters, the oscillator and power amplifier are turned off when the transmitter sends 0 data. The proposed class-e power amplifier has high efficiency for low level output power. The proposed on-off keying transmitter consumes 1.52 mw at -5 dBm output by 40 Mbps data rate and energy consumption 38 pJ/bit. The proposed transmitter has been designed in 0.18μm CMOS technology.


Author(s):  
T. Deepa ◽  
Harshita Mathur ◽  
K. A. Sunitha

<span lang="EN-US">Visible Light Communication (VLC) has become an accolade to its radio frequency counterpart. In VLC system, orthogonal frequency division multiplexing (OFDM) has drawn much attention, because of simple equalization, high spectral efficiency, high data rate and robustness to intersymbol interference (ISI). Besides, there are emerging applications that ought to be gotten with low latency and high reliability. To diminish power requirements with no transmission capacity extension, Trellis coded modulation (TCM) is utilized as a part of the framework in which the free distance of trellis diagram is equivalent to the minimum distance between the points of constellation focuses in partitioned subsets, which augments the coding gain up i.e. the performance parameter viably. TCM together with VLC-OFDM enhances the transmission execution in reasonable frameworks. In this paper, we propose OFDM which is based on TCM and is planned and exeuted for digitized OFDM frameworks by presenting delta sigma modulation (DSM) considering VLC channel. Simulation results show that the proposed TCM based VLC-OFDM offers incredible robustness against noises and nonlinear degradation.</span>


2014 ◽  
Vol 685 ◽  
pp. 306-309
Author(s):  
Hao Wang ◽  
Ze Yu Han

Visible light communication technology is a emerging wireless and optical communication technology developed after invention and application of white LED.In this paper, we have a research based on indoor visible light communication system of lighting white LED,discuss of the visible light communication channel characteristics,detailedly analysis of the indoor visible light communication link. This paper focuses on the modulation and demodulation method applied to visible light communication. In the past visible light communication is mainly used off keying modulation,however, the data transfer speed is limited due to the influence of ISI .This paper presents a solution based on OFDM modulation and demodulation, to reduce the impact brought from inter-symbol string under high data transfer speed.Based on data analysis and computer simulation,the program presented in this paper can be used as indoor lighting and high-speed data transmission.Finally, give scheme to achieve visible light communication modulation and demodulation,provide a theoretical basis for further experiments.


Sign in / Sign up

Export Citation Format

Share Document