State of the Art in Fuzzy Database Modeling

2006 ◽  
pp. 60-74
Author(s):  
Jose Galindo ◽  
Angelica Urrutia ◽  
Mario Piattini

On occasion, the term imprecision embraces several meanings that we should differentiate. For example, as you saw in Chapter II, the information you have may be incomplete or fuzzy (diffuse or vague), you may not know whether it is certain (uncertainty), perhaps you are totally ignorant of the information (unknown), you may know that the information cannot be applied to a specific entity (undefined), or you may not even know whether the data can be applied to the entity in question (total ignorance or a value of null) (Umano & Fukami, 1994). Each of these terms depends on the context in which it is applied. The management of uncertainty in database systems is a very important problem (Motro, 1995), as the information is often vague. Motro states that fuzzy information is content-dependent, and he classifies it as follows: • Uncertainty: It is impossible to determine whether the information is true or false. For example, “John may be 38 years old.” • Imprecision: The information available is not specific enough. For example, “John may be between 37 and 43 years old,” “John is 34 or 43 years old” (disjunction), “John is not 37 years old” (negative), or even a simple unknown. • Vagueness: The model includes elements (predicates or quantifiers) that are inherently vague, for example, “John is in his early years” or “John is at the end of his youth.” However, after these concepts have been defined, this case would match the previous one (imprecision). • Inconsistency: It contains two or more pieces of information that cannot be true at the same time. For example, “John is 37 and 43 years old, or he is 35 years old”; this is a special case of disjunction. • Ambiguity: Some elements of the model lack complete semantics (or a complete meaning). For example, “It is unclear whether the salaries are annual or monthly.”

Author(s):  
John F. Mahoney ◽  
Daniel P. Connaughton

Background: This study is concerned with the special case of a putted ball intersecting a standard golf hole at its diameter. The velocity of the ball at the initial rim of the hole is termed the launch velocity and depending upon its value the ball may either be captured or it may escape capture by jumping over the hole. The critical value of the launch velocity (V) is such that lesser values result in capture while greater values produce escape. Purpose: Since the value of the V entered prominently in some theoretical studies of putting, the aim of the current study is to provide an original re-evaluation of V and to contrast our results with existing results. Method: This analytical analysis relies on trigonometry in conjunction with Newtonian mechanics and the mathematics of projectiles. The results of a recent study into the mathematics of a bouncing ball which included the notions of restitution and friction were also employed in the analysis. Results: If bouncing and slipping do not occur when the ball hits the far rim of the hole our analysis produces a value of V of 1.356 m/s. When bouncing and slipping are present we find that V is at least 1.609 m/s but increases beyond this value as slipping and friction become greater. Useful relations which relate the dynamics and geometry of the ball to V are provided. Conclusion: Since ambient conditions may influence the extent of bounce and slippage we conjecture that the value of V is not unique.


2008 ◽  
pp. 187-207 ◽  
Author(s):  
Z.. M. Ma

Fuzzy set theory has been extensively applied to extend various data models and resulted in numerous contributions, mainly with respect to the popular relational model or to some related form of it. To satisfy the need of modeling complex objects with imprecision and uncertainty, recently many researches have been concentrated on fuzzy semantic (conceptual) and object-oriented data models. This chapter reviews fuzzy database modeling technologies, including fuzzy conceptual data models and database models. Concerning fuzzy database models, fuzzy relational databases, fuzzy nested relational databases, and fuzzy object-oriented databases are discussed, respectively.


Author(s):  
Hongzuo Xu ◽  
Yongjun Wang ◽  
Zhiyue Wu ◽  
Yijie Wang

Non-IID categorical data is ubiquitous and common in realworld applications. Learning various kinds of couplings has been proved to be a reliable measure when detecting outliers in such non-IID data. However, it is a critical yet challenging problem to model, represent, and utilise high-order complex value couplings. Existing outlier detection methods normally only focus on pairwise primary value couplings and fail to uncover real relations that hide in complex couplings, resulting in suboptimal and unstable performance. This paper introduces a novel unsupervised embedding-based complex value coupling learning framework EMAC and its instance SCAN to address these issues. SCAN first models primary value couplings. Then, coupling bias is defined to capture complex value couplings with different granularities and highlight the essence of outliers. An embedding method is performed on the value network constructed via biased value couplings, which further learns high-order complex value couplings and embeds these couplings into a value representation matrix. Bidirectional selective value coupling learning is proposed to show how to estimate value and object outlierness through value couplings. Substantial experiments show that SCAN (i) significantly outperforms five state-of-the-art outlier detection methods on thirteen real-world datasets; and (ii) has much better resilience to noise than its competitors.


2020 ◽  
Vol 29 (02) ◽  
pp. 2040003
Author(s):  
Andreas Kanavos ◽  
Ioannis E. Livieris

Does a post with specific emotional content that is posted on Twitter by an influential user have the capability to affect and even alter the opinions of those who read it? Accordingly, “influential” users affected by this post can then affect their followers so that eventually a large number of users may change their opinions about the subject the aforementioned post was made on? Social Influence can be described as the power or even the ability of a person to yet influence the thoughts and actions of other users. So, User Influence stands as a value that depends on the interest of the followers (via replies, mentions, retweets, favorites). Our study focuses on identifying such phenomena on the Twitter graph of posts and on determining which users’ posts can trigger them. Furthermore, we analyze the Influence Metrics of all users taking part in specific discussions and verify the differences among them. Finally the percentage of Graph cover when the diffusion starts from the “influential” users, is measured and corresponding results are extracted. Hence, results show that the proposed implementations and methodology can assist in identifying “influential” users, that play a dominant role in information diffusion.


2009 ◽  
pp. 338-361
Author(s):  
Z. M. Ma

Information systems have become the nerve center of current computer-based engineering applications, which hereby put the requirements on engineering information modeling. Databases are designed to support data storage, processing, and retrieval activities related to data management, and database systems are the key to implementing engineering information modeling. It should be noted that, however, the current mainstream databases are mainly used for business applications. Some new engineering requirements challenge today’s database technologies and promote their evolvement. Database modeling can be classified into two levels: conceptual data modeling and logical database modeling. In this chapter, we try to identify the requirements for engineering information modeling and then investigate the satisfactions of current database models to these requirements at two levels: conceptual data models and logical database models. In addition, the relationships among the conceptual data models and the logical database models for engineering information modeling are presented in the chapter viewed from database conceptual design.


2009 ◽  
pp. 105-125 ◽  
Author(s):  
Z.M. Ma

Fuzzy set theory has been extensively applied to extend various data models and resulted in numerous contributions, mainly with respect to the popular relational model or to some related form of it. To satisfy the need of modeling complex objects with imprecision and uncertainty, recently many researches have been concentrated on fuzzy semantic (conceptual) and object-oriented data models. This chapter reviews fuzzy database modeling technologies, including fuzzy conceptual data models and database models. Concerning fuzzy database models, fuzzy relational databases, fuzzy nested relational databases, and fuzzy object-oriented databases are discussed, respectively.


Author(s):  
Zhiyang Zhang ◽  
Shihua Zhang

Abstract Convolutional neural network (CNN) and its variants have led to many state-of-the-art results in various fields. However, a clear theoretical understanding of such networks is still lacking. Recently, a multilayer convolutional sparse coding (ML-CSC) model has been proposed and proved to equal such simply stacked networks (plain networks). Here, we consider the initialization, the dictionary design and the number of iterations to be factors in each layer that greatly affect the performance of the ML-CSC model. Inspired by these considerations, we propose two novel multilayer models: the residual convolutional sparse coding (Res-CSC) model and the mixed-scale dense convolutional sparse coding (MSD-CSC) model. They are closely related to the residual neural network (ResNet) and the mixed-scale (dilated) dense neural network (MSDNet), respectively. Mathematically, we derive the skip connection in the ResNet as a special case of a new forward propagation rule for the ML-CSC model. We also find a theoretical interpretation of dilated convolution and dense connection in the MSDNet by analyzing the MSD-CSC model, which gives a clear mathematical understanding of each. We implement the iterative soft thresholding algorithm and its fast version to solve the Res-CSC and MSD-CSC models. The unfolding operation can be employed for further improvement. Finally, extensive numerical experiments and comparison with competing methods demonstrate their effectiveness.


1900 ◽  
Vol 39 (2) ◽  
pp. 491-506 ◽  
Author(s):  
Tait

The first instalment of this paper was devoted in great part to the general subject involved in its title, but many of the illustrations were derived from the special case of the flight of a golf-ball. Since it was read I have endeavoured, alike by observation and by experiment, to improve my numerical data for this interesting application, particularly as regards the important question of the coefficient of resistance of the air. As will be seen, I now find a value intermediate to those derived (by taking average estimates of the mass and diameter of a golf-ball) from the results of Robins and of Bashforth. This has been obtained indirectly by means of a considerable improvement in the apparatus by which I had attempted to measure the initial speed of a golf-ball. I have, still, little doubt that the speed may, occasionally, amount to the 300, or perhaps even the 350, foot-seconds which I assumed provisionally in my former paper:—but even the first of these is a somewhat extravagant estimate; and I am now of opinion that, even with very good driving, an initial speed of about 240 is not often an underestimate, at least in careful play. From this, and the fact that six seconds at least are required for a long carry (say 180 yards), I reckon the “terminal velocity” at about 108, giving v2/360 as the resistance-acceleration.


The physical basis underlying the black hole evaporation process is clarified by a calculation of the expectation value of the energy-momentum tensor for a massless scalar field in a completely general two dimensional collapse scenario. It is found that radiation is produced inside the collapsing matter which propagates both inwards and outwards. The ingoing com­ponent eventually emerges from the star after travelling through the centre. The outgoing energy flux appears at infinity as the evaporation radiation discovered by Hawking. At late times, outside the star, the former component fades out exponentially, and the latter component approaches a value which is independent of the details of the collapse process. In the special case of a collapsing hollow, thin shell of matter, all the radiation is produced at the shell. These results are independent of regularization ambiguities, which enter only the static vacuum polariza­tion terms in the energy-momentum tensor. The significance of an earlier remark about black hole explosions is discussed in the light of these results.


1978 ◽  
Vol 10 (2) ◽  
pp. 472-490 ◽  
Author(s):  
David Assaf

Discounted dynamic programming problems whose transition mechanism depends only on the action taken and does not depend on the current state are considered. A value determination operation and method of obtaining optimal policies for the case of finite action space (and arbitrary state space) are presented.The solution of other problems is reduced to this special case by a suitable transformation. Results are illustrated by examples.


Sign in / Sign up

Export Citation Format

Share Document