Novel Multi-Antenna and Smart Antenna Techniques for Next Generation Wireless Communication Networks

Author(s):  
Apostolos Georgiadis ◽  
Carles Fernández Prades

Multi-antenna systems incorporating smart antenna techniques present numerous advantages compared to their single antenna counterparts including increased capacity and range, by exploring spatial diversity. The current status and novel research directions in the framework of such array systems are presented. Furthermore, the application of nonlinear antenna arrays in the design of novel RF/microwave front-ends, that present compact, low cost and energy efficient solutions for smart antenna array applications is demonstrated. In this manner, the advantages of such systems in terms of their application within next generation networks are highlighted both from the point of view of digital signal processing techniques, as well as alternative analog radio front-end architectures.

2006 ◽  
Vol 59 (2) ◽  
pp. 263-279 ◽  
Author(s):  
Rainer Mautz ◽  
Washington Ochieng ◽  
David Walsh ◽  
Gary Brodin ◽  
Andy Kemp ◽  
...  

This paper details the current status of the development of an ‘automatic’ low-cost system based on wireless communications technology to provide continuous tracking of the location of devices in all environments. This task requires a multi-disciplinary approach combining communications systems design, digital signal processing to extract ranges and, importantly, approaches from the field of geodesy to develop novel network positioning techniques for ad-hoc networks. Such a network will support a number of services relevant to crime management where seamless tracking is required. The paper discusses the process for developing the system, christened intelligent pervasive location tracking (iPLOT), with a particular reference to user and system requirements, and how these have been used to explore a network positioning strategy.


2021 ◽  
Author(s):  
David J. Purnell ◽  
Natalya Gomez ◽  
William Minarik ◽  
David Porter ◽  
Gregory Langston

Abstract. We have developed a ground-based Global Navigation Satellite System Reflectometry (GNSS-R) technique for monitoring water levels with a comparable precision to standard tide gauges (e.g., pressure transducers) but at a fraction of the cost and using commercial products that are straightforward to assemble. As opposed to using geodetic-standard antennas that have been used in previous GNSS-R literature, we use multiple co-located low-cost antennas to retrieve water levels via inverse modelling of Signal-to-Noise ratio data. The low-cost antennas are advantageous over geodetic-standard antennas because they are much less expensive (even when using multiple antennas in the same location) and they can be used for GNSS-R analysis over a greater range of satellite elevation angles. We validate our technique using arrays of four antennas at three test sites with variable tidal forcing and co-located operational tide gauges. The root mean square error between the GNSS-R and tide gauge measurements ranges from 0.7–1.2 cm when using all four antennas at each site. We find that using four antennas instead of a single antenna improves the precision by 30–50 % and preliminary analysis suggests that four appears to be the optimum number of co-located antennas. In order to obtain precise measurements, we find that it is important for the antennas to track GPS, GLONASS and Galileo satellites over a wide range of azimuth angles (at least 140 degrees) and elevation angles (at least 30 degrees).


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1697
Author(s):  
Xicong Li ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvánovec ◽  
Paul Anthony Haigh

With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.


2021 ◽  
Author(s):  
Venkataramanan Mahalingam ◽  
Sourav Ghosh ◽  
Rajkumar Jana ◽  
Sagar Ganguli ◽  
Harish Reddy Inta ◽  
...  

The quest for developing next-generation non-precious electrocatalyst is getting aroused in recent times. Herein, we have designed and developed a low cost electrocatalyst by ligand-assisted synthetic strategy in aqueous medium....


2020 ◽  
Vol 20 (3) ◽  
pp. 1-31
Author(s):  
Nikolaos Athanasios Anagnostopoulos ◽  
Saad Ahmad ◽  
Tolga Arul ◽  
Daniel Steinmetzer ◽  
Matthias Hollick ◽  
...  
Keyword(s):  
Low Cost ◽  

2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2254
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Over the last few years, the use of smartwatches in automatic Fall Detection Systems (FDSs) has aroused great interest in the research of new wearable telemonitoring systems for the elderly. In contrast with other approaches to the problem of fall detection, smartwatch-based FDSs can benefit from the widespread acceptance, ergonomics, low cost, networking interfaces, and sensors that these devices provide. However, the scientific literature has shown that, due to the freedom of movement of the arms, the wrist is usually not the most appropriate position to unambiguously characterize the dynamics of the human body during falls, as many conventional activities of daily living that involve a vigorous motion of the hands may be easily misinterpreted as falls. As also stated by the literature, sensor-fusion and multi-point measurements are required to define a robust and reliable method for a wearable FDS. Thus, to avoid false alarms, it may be necessary to combine the analysis of the signals captured by the smartwatch with those collected by some other low-power sensor placed at a point closer to the body’s center of gravity (e.g., on the waist). Under this architecture of Body Area Network (BAN), these external sensing nodes must be wirelessly connected to the smartwatch to transmit their measurements. Nonetheless, the deployment of this networking solution, in which the smartwatch is in charge of processing the sensed data and generating the alarm in case of detecting a fall, may severely impact on the performance of the wearable. Unlike many other works (which often neglect the operational aspects of real fall detectors), this paper analyzes the actual feasibility of putting into effect a BAN intended for fall detection on present commercial smartwatches. In particular, the study is focused on evaluating the reduction of the battery life may cause in the watch that works as the core of the BAN. To this end, we thoroughly assess the energy drain in a prototype of an FDS consisting of a smartwatch and several external Bluetooth-enabled sensing units. In order to identify those scenarios in which the use of the smartwatch could be viable from a practical point of view, the testbed is studied with diverse commercial devices and under different configurations of those elements that may significantly hamper the battery lifetime.


Sign in / Sign up

Export Citation Format

Share Document