The Optimizing WEB

2011 ◽  
pp. 2012-2024
Author(s):  
Aditya K. Ghose ◽  
Graham Billiau

There is a global consensus on the need to reduce our collective carbon footprint. Improving the efficiency of how we use our infrastructure is central to reducing energy consumption. Optimization is fundamental to any approach to climate change mitigation. While optimization technology has been on offer for almost 70 years, most applications of optimization technology have been in piecemeal, monolithic optimization systems. Yet the climate change crisis requires optimization on a large-scale, and in manner that permits entities in a massive planetary supply chain to collaborate to achieve the commonly agreed upon carbon mitigation objective. Traditional stand-alone “batch” optimization will also not be adequate for this setting, but will need to be tightly coupled with networks of planners and controllers. This chapter presents a vision for the Optimizing Web – a large global network of interoperating optimizers that is as ubiquitous as the present-day web, and that leverages it‘s existing infrastructure for green ICT.

Author(s):  
Aditya K. Ghose ◽  
Graham Billiau

There is a global consensus on the need to reduce our collective carbon footprint. Improving the efficiency of how we use our infrastructure is central to reducing energy consumption. Optimization is fundamental to any approach to climate change mitigation. While optimization technology has been on offer for almost 70 years, most applications of optimization technology have been in piecemeal, monolithic optimization systems. Yet the climate change crisis requires optimization on a large-scale, and in manner that permits entities in a massive planetary supply chain to collaborate to achieve the commonly agreed upon carbon mitigation objective. Traditional stand-alone “batch” optimization will also not be adequate for this setting, but will need to be tightly coupled with networks of planners and controllers. This chapter presents a vision for the Optimizing Web – a large global network of interoperating optimizers that is as ubiquitous as the present-day web, and that leverages it‘s existing infrastructure for green ICT.


Author(s):  
Dalia Streimikiene ◽  
Gintare Stankuniene

This chapter explores interventions of energy consumption in households and their impacts on behavioural changes by addressing the main behavioural barriers of sustainable energy consumption. The main objectives of this chapter are to identify the importance of nudges in reducing energy consumption and implementation of renewable microgeneration technologies and to develop recommendations for tailor-made interventions. A qualitative research method is applied to analyse the climate change mitigation measures linked to energy consumption in households based on systematic literature review. Traditional economic and regulatory policy tools can be effectively supplemented by nudges; however, more research is necessary in this field.


In connection with the large-scale development of high-rise building projects recently in Russia and abroad and their significant energy consumption, one of the main principles in designing is the use of effective energy-saving technologies. Also, important aspects are reducing energy consumption and neutralizing the environmental impact of tall buildings. The most promising areas in the field of integration of solar modules (planar and concentrating) in the construction of buildings are development of BIPV technologies (roofing, film, facade materials), the integration of solar energy concentrators that do not require biaxial tracking (medium and low concentrations) on the facades and roofs of buildings (parabolic concentrators, lenses, and Fresnel mirrors), integration of highly concentrated modules on the roofs of buildings.


2013 ◽  
Vol 42 (1) ◽  
pp. 71-98 ◽  
Author(s):  
Axel Berger ◽  
Doris Fischer ◽  
Rasmus Lema ◽  
Hubert Schmitz ◽  
Frauke Urban

Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these policy fields, empirical research has to go beyond simplistic narratives. This paper suggests a conceptual apparatus that will help researchers better understand the complexities of the real world. The relevant actors operate at different levels and in the public and private sectors. The main message of the paper is that combining the multilevel governance and value-chain approaches helps clarify the multiple relationships between these actors.


2019 ◽  
Vol 3 (1) ◽  
pp. 148 ◽  
Author(s):  
Rodrigo Cámara-Leret ◽  
Andre Schuiteman ◽  
Timothy Utteridge ◽  
Gemma Bramley ◽  
Richard Deverell ◽  
...  

The Manokwari Declaration is an unprecedented pledge by the governors of Indonesia’s two New Guinea provinces to promote conservation and become SE Asia’s new Costa Rica. This is an exciting, yet challenging endeavour that will require working on many fronts that transcend single disciplines. Because Indonesian New Guinea has the largest expanse of intact forests in SE Asia, large-scale conservation pledges like the Manokwari Declaration will have a global impact on biodiversity conservation and climate change mitigation.


2015 ◽  
Vol 6 (2) ◽  
pp. 447-460 ◽  
Author(s):  
K. Frieler ◽  
A. Levermann ◽  
J. Elliott ◽  
J. Heinke ◽  
A. Arneth ◽  
...  

Abstract. Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.


In connection with the large-scale development of high-rise building projects recently in Russia and abroad and their significant energy consumption, one of the main principles in designing is the use of effective energy-saving technologies. Also important aspects are reducing energy consumption and neutralizing the environmental impact of tall buildings. The most promising areas in the field of integration of solar modules (planar and concentrating) in the construction of buildings are development of BIPV technologies (roofing, film, facade materials), the integration of solar energy concentrators that do not require biaxial tracking (medium and low concentrations) on the facades and roofs of buildings (parabolic concentrators, lenses, and Fresnel mirrors), integration of highly concentrated modules on the roofs of buildings.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3150 ◽  
Author(s):  
Chao Sha ◽  
Qin Liu ◽  
Si-Yi Song ◽  
Ru-Chuan Wang

With the increasing number of ubiquitous terminals and the continuous expansion of network scale, the problem of unbalanced energy consumption in sensor networks has become increasingly prominent in recent years. However, a node scheduling strategy or an energy consumption optimization algorithm may be not enough to meet the requirements of large-scale application. To address this problem a type of Annulus-based Energy Balanced Data Collection (AEBDC) method is proposed in this paper. The circular network is divided into several annular sectors of different sizes. Nodes in the same annulus-sector form a cluster. Based on this model, a multi-hop data forwarding strategy with the help of the candidate cluster headers is proposed to balance energy consumption during transmission and to avoid buffer overflow. Meanwhile, in each annulus, there is a Wireless Charging Vehicle (WCV) that is responsible for periodically recharging the cluster headers as well as the candidate cluster headers. By minimizing the recharging cost, the energy efficiency is enhanced. Simulation results show that AEBDC can not only alleviate the “energy hole problem” in sensor networks, but also effectively prolong the network lifetime.


2019 ◽  
Vol 116 (23) ◽  
pp. 11187-11194 ◽  
Author(s):  
Arne Kätelhön ◽  
Raoul Meys ◽  
Sarah Deutz ◽  
Sangwon Suh ◽  
André Bardow

Chemical production is set to become the single largest driver of global oil consumption by 2030. To reduce oil consumption and resulting greenhouse gas (GHG) emissions, carbon dioxide can be captured from stacks or air and utilized as alternative carbon source for chemicals. Here, we show that carbon capture and utilization (CCU) has the technical potential to decouple chemical production from fossil resources, reducing annual GHG emissions by up to 3.5 Gt CO2-eq in 2030. Exploiting this potential, however, requires more than 18.1 PWh of low-carbon electricity, corresponding to 55% of the projected global electricity production in 2030. Most large-scale CCU technologies are found to be less efficient in reducing GHG emissions per unit low-carbon electricity when benchmarked to power-to-X efficiencies reported for other large-scale applications including electro-mobility (e-mobility) and heat pumps. Once and where these other demands are satisfied, CCU in the chemical industry could efficiently contribute to climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document