Recurrent Higher Order Neural Network Control for Output Trajectory Tracking with Neural Observers and Constrained Inputs

Author(s):  
Luis J. Ricalde ◽  
Edgar N. Sanchez ◽  
Alma Y. Alanis

This Chapter presents the design of an adaptive recurrent neural observer-controller scheme for nonlinear systems whose model is assumed to be unknown and with constrained inputs. The control scheme is composed of a neural observer based on Recurrent High Order Neural Networks which builds the state vector of the unknown plant dynamics and a learning adaptation law for the neural network weights for both the observer and identifier. These laws are obtained via control Lyapunov functions. Then, a control law, which stabilizes the tracking error dynamics is developed using the Lyapunov and the inverse optimal control methodologies . Tracking error boundedness is established as a function of design parameters.

Author(s):  
Chih-Hong Lin

Because an electric scooter driven by permanent magnet synchronous motor (PMSM) servo system has the unknown nonlinearity and the time-varying characteristics, its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, a novel adaptive recurrent Legendre neural network (NN) control system, which has fast convergence and provide high accuracy, is proposed to control for PMSM servo-drive electric scooter under external torque disturbance in this study. The novel adaptive recurrent Legendre NN control system consists of a recurrent Legendre NN control with adaptation law and a remunerated control with estimation law. In addition, the online parameter tuning methodology of the recurrent Legendre NN control and the estimation law of the remunerated control can be derived by using the Lyapunov stability theorem. Finally, comparative studies are demonstrated by experimental results in order to show the effectiveness of the proposed control scheme.


2019 ◽  
Vol 16 (6) ◽  
pp. 172988141989477
Author(s):  
Lin Wang ◽  
Chunzhi Yang

This paper investigates finite-time control of uncertain robotic manipulators with external disturbances by means of neural network control and backstepping technique. To solve the “explosion of terms” in traditional backstepping control, a second-order command filter is designed, and the virtual input and its first-order derivative can be obtained accurately in a finite time. The parameters of the neural network are updated by using the tracking error signals. The proposed controller can guarantee that the tracking error converges to a small region of the origin in some finite time. Finally, we give a simulation study to show the effectiveness of the proposed method.


2011 ◽  
Vol 211-212 ◽  
pp. 953-957
Author(s):  
Hui Hu ◽  
Peng Guo ◽  
Cheng Liu

An adaptive neural network control scheme is presented for a class of SISO affine nonlinear systems. Parameters in neural networks are updated using a gradient descent method. No robustifying control term is used in controller. The convergence of adaptive parameters and tracking error and the boundedness of all states in the corresponding closed-loop system are demonstrated by Lyapunov stability theorem. Simulation results demonstrate the effectiveness of the approach.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hongjun Yang ◽  
Zhijie Liu ◽  
Shuang Zhang

This paper investigates a single parameter adaptive neural network control method for unknown nonlinear systems with bounded external disturbances. A smooth performance function is developed to achieve the transient and steady state of system tracking error that could be constrained in prescribed bounds. The difficulties in dealing with unknown system parameters and disturbances of nonlinear systems are resolved based on the single parameter adaptive neural network control which is proposed to effectively reduce the calculation amount. The theoretical analysis implies that the proposed control scheme makes the closed-loop system uniformly ultimately bounded. Simulation demonstrates that the proposed adaptive controller gives a favorable performance on tracking desired signal and constraining the bounds of tracking error which could be arbitrarily small with appropriate adaptive parameters. Both the theoretical analysis and simulations confirm the effectiveness of the control scheme.


2021 ◽  
Vol 11 (7) ◽  
pp. 3257
Author(s):  
Chen-Huan Pi ◽  
Wei-Yuan Ye ◽  
Stone Cheng

In this paper, a novel control strategy is presented for reinforcement learning with disturbance compensation to solve the problem of quadrotor positioning under external disturbance. The proposed control scheme applies a trained neural-network-based reinforcement learning agent to control the quadrotor, and its output is directly mapped to four actuators in an end-to-end manner. The proposed control scheme constructs a disturbance observer to estimate the external forces exerted on the three axes of the quadrotor, such as wind gusts in an outdoor environment. By introducing an interference compensator into the neural network control agent, the tracking accuracy and robustness were significantly increased in indoor and outdoor experiments. The experimental results indicate that the proposed control strategy is highly robust to external disturbances. In the experiments, compensation improved control accuracy and reduced positioning error by 75%. To the best of our knowledge, this study is the first to achieve quadrotor positioning control through low-level reinforcement learning by using a global positioning system in an outdoor environment.


2009 ◽  
Vol 610-613 ◽  
pp. 450-453
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Jin Zhang ◽  
Gui Ping He

The fracture problems of ecomaterial (aluminum alloyed cast iron) under extra-low cycle rotating bending fatigue loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent in results comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth, the presetting deflection and tip radius of the notch, and the output parameters, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


2021 ◽  
Vol 7 (7) ◽  
pp. 61-70
Author(s):  
Andrey A. TATEVOSYAN ◽  

A method for optimizing the parameters of a modular half-speed synchronous generator with permanent magnets (PMSG) and the generator voltage control system with a neural network-based algorithm are proposed. The basic design scheme of the modular half-speed PMSG is considered, which features a compact layout of the generator main parts, thereby ensuring the optimal use of the working volume, smaller sizes of the magnetic system, and smaller mass of the active materials used in manufacturing the machine. Owing to the simple and reliable design of the generator, its output parameters can be varied in a wide range with using standard electrical circuits for voltage stabilization and current rectification along with an additional voltage regulation unit. Owing to this feature, the design scheme of the considered generator has essential advantages over the existing analogs with a common cylindrical magnetic core. In view of these circumstances, the development of a high-efficient modular half-speed PMSG as an autonomous DC power source is of both scientific and practical interest; this generator can be used to supply power to a large range of electricity consumers located in rural areas, low-rise residential areas, military communities, allotments etc. In solving the problem of optimizing the generator’s magnetic system, the main electrical machine analysis equation is obtained. The optimal ratios of the winding wire mass to the mass of permanent magnets and of the PM height to the air gap value for achieving the maximum specific useful power output have been determined. An analytical correlation between the optimal design parameters of a half-speed modular PMSG and its power performance parameters has been established. The expediency to develop a neural network-based control system is shown. The number of load-bearing modules of the half-speed PMSG is determined depending on the wind velocity, load factor and the required output voltage. The neural network was trained on the examples of a training sample using a laboratory test bench. The neural network was implemented in the MatLab 2019b environment by constructing a synchronous generator simulation model in the Simulink software extension. The possibility of using the voltage control system of a half-speed modular PMSG with a microcontroller for operation of the neural network platform of the Arduino family (ArduinoDue) independently of the PC is shown.


2006 ◽  
Vol 315-316 ◽  
pp. 85-89
Author(s):  
S. Jiang ◽  
Yan Shen Xu ◽  
J. Wu

To improve the cutting efficiency, one of key approaches is to control with constant force in the full depth working condition. And the controller design is vital to realize the real-time feasibility and robustness of the system. A neuron optimization based PID approach is proposed in this paper and adopted in the NC cutting process. This approach optimizes the parameters of PID controller real-timely with the neural network control principle. It not only overcomes the mismatch of the open-loop system model which occurred in constant PID control, but also solves the contradiction between the calculation speed and precision in the neural network which caused by the node choosing of the hidden layer. At last, the simulation has been carried out on a NC milling machine to prove the validity and effectiveness of the proposed approach.


2011 ◽  
Vol 103 ◽  
pp. 488-492
Author(s):  
Guang Bin Wang ◽  
Xian Qiong Zhao ◽  
Yi Lun Liu

In the rolling process, deviation is the phenomenon that the strap width direction's centerline deviates from rolling system setting centerline,serious deviation will cause product quality drop and rolling equipment fault. This paper has established the finite element model to the hot tandem rolling aluminum strap, analyzed the strap’s deviation rule under four kinds of incentives,obtained the neural network predictive model and the control policy of the tail deviation.The result to analyze a set of fact deviation data shows this method may control tail deviation in preconcerted permission range.


Sign in / Sign up

Export Citation Format

Share Document