Bundled SWCNT for Global VLSI Interconnects

Author(s):  
Raj Kumar ◽  
Shashi Bala

Carbon nanotube (CNT) has been declared the most attractive and suitable material for VLSI sub-micron technology. Because of CNT's phenomenal physical, electrical, and mechanical properties, it is more advantageous than copper interconnect material. In this chapter, RLC equivalent model of bundled single-wall CNT (SWCNT) is presented by using driver-interconnect-load (DIL) system with CMOS driver. The crosstalk delay is calculated for two-line bus architecture made of two parallel lines (i.e., upper as aggressor and lower as victim). From the simulation, it has been observed that crosstalk delay increases with increase in interconnect length and transition time, whereas it decreases with increased spacing between the lines (aggressor and victim). However, crosstalk delay decreases as the number of tubes in a bundle increases.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Manoj Kumar Majumder ◽  
Nisarg D. Pandya ◽  
B. K. Kaushik ◽  
S. K. Manhas

Carbon nanotube (CNT) can be considered as an emerging interconnect material in current nanoscale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Sara Metwally ◽  
Daniel P. Ura ◽  
Zuzanna J. Krysiak ◽  
Łukasz Kaniuk ◽  
Piotr K. Szewczyk ◽  
...  

Atopic dermatitis (AD) is a chronic, inflammatory skin condition, caused by wide genetic, environmental, or immunologic factors. AD is very common in children but can occur at any age. The lack of long-term treatments forces the development of new strategies for skin regeneration. Polycaprolactone (PCL) is a well-developed, tissue-compatible biomaterial showing also good mechanical properties. In our study, we designed the electrospun PCL patches with controlled architecture and topography for long-term release in time. Hemp oil shows anti-inflammatory and antibacterial properties, increasing also the skin moisture without clogging the pores. It can be used as an alternative cure for patients that do not respond to traditional treatments. In the study, we tested the mechanical properties of PCL fibers, and the hemp oil spreading together with the release in time measured on skin model and human skin. The PCL membranes are suitable material as patches or bandages, characterized by good mechanical properties and high permeability. Importantly, PCL patches showed release of hemp oil up to 55% within 6 h, increasing also the skin moisture up to 25%. Our results confirmed that electrospun PCL patches are great material as oil carriers indicating a high potential to be used as skin patches for AD skin treatment.


2012 ◽  
Vol 32 (4) ◽  
pp. 248-257 ◽  
Author(s):  
Jing Guo ◽  
Min Li ◽  
Qianli Liu ◽  
Yizhuo Gu ◽  
Yanxia Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document