Process Optimization Study of Alternative Fuel Production From Linseed Oil

Author(s):  
Karthickeyan V. ◽  
Balamurugan S. ◽  
Ashok B. ◽  
Thiyagarajan S. ◽  
Mohamed Shameer P. ◽  
...  

This chapter focuses on the selection of optimum parameters for transesterification of linseed oil biodiesel production in the presence of calcium oxide (CaO) obtained from the waste eggshells. The waste chicken eggshells were calcined at 900°C for 4 hours and it was characterized by X-ray diffractometer (XRD). The transesterification process was conducted according to L9 orthogonal array with selected input control parameters such as methanol to oil molar ratio, reaction temperature, and catalyst loading. The output parameters were biodiesel yield and viscosity. The multi-objective, decision-making technique called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to identify the optimum transesterification process parameters to obtain maximum biodiesel yield with minimal viscosity. The optimized values for transesterification process parameters were depicted as methanol to oil ratio of 6:1, reaction temperature of 65°C, and catalyst loading of 5% w/w.

2019 ◽  
Vol 73 (6) ◽  
pp. 351-362 ◽  
Author(s):  
Dusica Djokic-Stojanovic ◽  
Zoran Todorovic ◽  
Dragan Troter ◽  
Olivera Stamenkovic ◽  
Ljiljana Veselinovic ◽  
...  

Triethanolamine was applied as an efficient ?green? cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4?C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75?C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9?1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.


2020 ◽  
Vol 834 ◽  
pp. 16-23
Author(s):  
Pongchanun Luangpaiboon ◽  
Pasura Aungkulanon

Biodiesel was synthesized from direct transesterification of palm oil reacted with methanol in the presence of a suitable catalyst. There is a sequence of three consecutive reversible reactions for the transesterification process. These process parameters were optimized via the hybrid optimization approach of a conventional response surface method and artificial intelligence mechanisms from Sine Cosine and Thermal Exchange Optimization metaheuristics. The influential parameters and their combined interaction effects on the transesterification efficiency were established through a factorial designed experiments. In this study, the influential parameters being optimized to obtain the maximum yield of biodiesel were reaction temperature of 60–150°C, reaction time of 1–6 hours, methanol to oil molar ratio of 6:1–12:1 mol/mol and weight of catalyst of 1–10wt. %. On the first phase, the analysis of variance (ANOVA) revealed the reaction time as the most influential parameter on biodiesel production. Based on the experimental results from the hybrid algorithm via the SCO, it was concluded that the optimal biodiesel yield for the transesterification of palm oil were found to be 100°C for reaction temperature, 4 hours for reaction time, 10:1 wt/wt of ratio methanol to oil and 8% of weight of catalyst with 92.15% and 90.97% of biodiesel yield for expected and experimental values, respectively.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
O. Kuipa ◽  
T. S. Marwizi ◽  
P. K. Kuipa

AbstractThe production of biodiesel from dairy effluent scum using calcined egg shell as the transesterification catalyst has been explored. Eggshell powder was calcined at 900 °C for 3 h and used as catalyst. The influence of methanol-oil molar ratio, catalyst concentration and reaction temperature were studied using Response Surface Methodology employing a Central Composite Rotatable Design. An empirical model that relates the yield of biodiesel to the studied factors was obtained. The model has high statistical significance at 95% confidence interval with R2 and adjusted R2 values of 96.31% and 95.75% respectively. Results showed that among the three studied factors, the methanol-oil molar ratio had the greatest contribution to the yield of dairy effluent scum derived biodiesel followed by reaction temperature and finally, the catalyst concentration. Significant interaction effects were also present between methanol-oil ratio and catalyst, catalyst and reaction temperature and methanol-oil ratio and reaction temperature. Accordingly, the optimal variable settings were 14.355:1 methanol-oil molar ratio, 3.09% catalyst loading by weight of pre-treated dairy scum oil and 55.20°C reaction temperature; with a corresponding yield of 92.72%.


2021 ◽  
Author(s):  
Vaishali Mittal ◽  
Uttam Kumar Ghosh

Abstract Production of biodiesel from microalgae is gaining popularity since it does not compromise food security or the global economy. This article reports biodiesel production with Spirulina microalgae through nanocatalytic transesterification process. The nanocatalyst calcium methoxide Ca(OCH3)2 was synthesized using wet impregnation method and utilized to carry out the transesterification process. The nanocatalyst was characterized to evaluate its structural and spectral characteristics using different characterization techniques such as Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunaeur-Emmett-Teller(BET) measurement for surface area. The result demonstrates that calcium methoxide Ca(OCH3)2 possesses a high catalytic activity compared to a heterogeneous catalyst such as calcium oxide (CaO). The impact of several process parameters such as reaction temperature, the molar ratio of methanol to oil, catalyst concentration, and reaction time used in the transesterification process was optimized by employing central composite design(CCD) based response surface methodology(RSM). The polynomial regression equation of second order was obtained for methyl esters. The model projected a 99% fatty acid methyl esters (FAME) yield for optimal process parameters of reaction time 3hrs,3 wt.% of Ca(OCH3)2 catalyst loading, 80°C reaction temperature, and 30:1 methanol to oil molar ratio.


2020 ◽  
Author(s):  
Dejene Beyene Lemma ◽  
Mohammedsani Abdulkadir Abagisa ◽  
Adisu Befekadu Kebede

Abstract In order to lower the high prices of individual feedstock, extend the life of a more limited feedstock and to improve the fuel properties of biodiesel it imperative to optimize process parameters for biodiesel derived from mixed feedstocks. Samples of castor seeds were collected from Jimma zone, southwest Ethiopia while sample of wet microalgal biomass was obtained from wastewater stabilization ponds using a 60µm filter screen. The castor seeds and algal biomass were sun-dried before further dried at 800C in an oven and ground to pastes. Oils were extracted from dried and milled castor seeds and micro-algae pastes with a Soxhlet apparatus using methanol. The extracted oil was purified and characterized before converted to biodiesel. A transesterification process designed using Response Surface Methodology (RSM) based on central composite design (CCD) experimental design was used to optimize the biodiesel production process parameters from mixed oil using alkaline catalyst. The Design Expert® 12 software was used to analysis experimental results. The effects of catalyst concentration, ethanol to mixed oil molar ratio and reaction temperature on the biodiesel yield were investigated using the experimental results. Accordingly, the optimum conditions for biodiesel production from mixed oil were a catalyst concentration of 1.23 % w.t of the oil, alcohol to mixed oil molar ratio of 5.94:1 (v/v) and reaction temperature of 51.300C. The yield of biodiesel under these conditions was 93.88%. Experiment was conducted under the specified optimum conditions to validate the result predicted by the software. The yield of biodiesel from the experiment was 93.36% which is very close to the value predicted by the software. The fatty acid composition of the biodiesel from mixed oil was analyzed using Gas chromatograph. The various fuel properties of biodiesel were determined using standard methods and results were compared with ASTM D6751 and EN 14214 standards. The physicochemical properties fulfill both standards.


2020 ◽  
Author(s):  
Dejene Beyene Lemma ◽  
Mohammedsani Abdulkadir Abagisa ◽  
Adisu Befekadu Kebede

Abstract In order to lower the high prices of individual feedstock, extend the life of a more limited feedstock and to improve the fuel properties of biodiesel it imperative to optimize process parameters for biodiesel derived from mixed feedstocks. Samples of castor seeds were collected from Jimma zone, southwest Ethiopia while sample of wet microalgal biomass was obtained from wastewater stabilization ponds using a 60µm filter screen. The castor seeds and algal biomass were sun-dried before further dried at 80 0 C in an oven and ground to pastes. Oils were extracted from dried and milled castor seeds and micro-algae pastes with a Soxhlet apparatus using methanol. The extracted oil was purified and characterized before converted to biodiesel. A transesterification process designed using Response Surface Methodology (RSM) based on central composite design (CCD) experimental design was used to optimize the biodiesel production process parameters from mixed oil using alkaline catalyst. The Design Expert® 12 software was used to analysis experimental results. The effects of catalyst concentration, ethanol to mixed oil molar ratio and reaction temperature on the biodiesel yield were investigated using the experimental results. Accordingly, the optimum conditions for biodiesel production from mixed oil were a catalyst concentration of 1.23% w.t of the oil, alcohol to mixed oil molar ratio of 5.94 :1 (v/v) and reaction temperature of 51.30 0 C. The yield of biodiesel under these conditions was 93.88% . Experiment was conducted under the specified optimum conditions to validate the result predicted by the software. The yield of biodiesel from the experiment was 93.36 % which is very close to the value predicted by the software. The fatty acid composition of the biodiesel from mixed oil was analyzed using Gas chromatograph. The various fuel properties of biodiesel were determined using standard methods and results were compared with ASTM D6751 and EN 14214 standards. The physicochemical properties fulfill both standards.


2019 ◽  
Vol 59 (1) ◽  
pp. 88-97 ◽  
Author(s):  
Adeyinka S. Yusuff ◽  
Lekan T. Popoola

An optimization of the biodiesel production from a waste frying oil via a heterogeneous transesterification was studied. This present study is also aimed at investigating the catalytic ehaviour of the alumina supported eggshell (ASE) for the synthesis of biodiesel. A synthesized ASE catalyst, at various mixing ratios of alumina to eggshell, was investigated and exhibited a better activity for the reaction when the eggshell and alumina were mixed via incipient wetness impregnation in 2 : 1 proportion on a mass basis and calcined at 900 °C for 4 h. The as-synthesized catalyst was characterized by basicity, BET, SEM, EDX, and FTIR. The 2k factorial experimental design was employed for an optimization of process variables, which include catalyst loading, reaction time, methanol/oil molar ratio and reaction temperature and their effects on the biodiesel yield were studied. The optimization results showed that the reaction time has the highest percentage contribution of 40.139% while the catalyst loading contributes the least to the biodiesel production, as low as 1.233 %. The analysis of variance (ANOVA) revealed a high correlation coefficient (R2 = 0.9492) and the interaction between the reaction time and reaction temperature contributes significantly to the biodiesel production process with percentage contribution of 14.001 %, compared to other interaction terms. The biodiesel yield of 77.56% was obtained under the optimized factor combination of 4.0 wt.% catalyst loading, 120 min reaction time, 12 : 1 methanol/oil molar ratio and reaction temperature of 65 °C. The reusability study showed that the ASE catalyst could be reused for up to four cycles and the biodiesel produced under optimum conditions conformed to the ASTM standard.


2020 ◽  
Author(s):  
Dejene Beyene Lemma ◽  
Mohammedsani Abdulkadir Abagisa ◽  
Adisu Befekadu Kebede

Abstract In order to lower the high prices of individual feedstock, extend the life of a more limited feedstock and to improve the fuel properties of biodiesel it imperative to optimize process parameters for biodiesel derived from mixed feedstocks. Samples of castor seeds were collected from Jimma zone, southwest Ethiopia while sample of wet microalgal biomass was obtained from wastewater stabilization ponds using a 60µm filter screen. The castor seeds and algal biomass were sun-dried before further dried at 80 0 C in an oven and ground to pastes. Oils were extracted from dried and milled castor seeds and micro-algae pastes with a Soxhlet apparatus using methanol. The extracted oil was purified and characterized before converted to biodiesel. A transesterification process designed using Response Surface Methodology (RSM) based on central composite design (CCD) experimental design was used to optimize the biodiesel production process parameters from mixed oil using alkaline catalyst. The Design Expert® 12 software was used to analysis experimental results. The effects of catalyst concentration, ethanol to mixed oil molar ratio and reaction temperature on the biodiesel yield were investigated using the experimental results. Accordingly, the optimum conditions for biodiesel production from mixed oil were a catalyst concentration of 1.23% w.t of the oil, alcohol to mixed oil molar ratio of 5.94 :1 (v/v) and reaction temperature of 51.30 0 C. The yield of biodiesel under these conditions was 93.88% . Experiment was conducted under the specified optimum conditions to validate the result predicted by the software. The yield of biodiesel from the experiment was 93.36 % which is very close to the value predicted by the software. The fatty acid composition of the biodiesel from mixed oil was analyzed using Gas chromatograph. The various fuel properties of biodiesel were determined using standard methods and results were compared with ASTM D6751 and EN 14214 standards. The physicochemical properties fulfill both standards.


2013 ◽  
Vol 834-836 ◽  
pp. 550-554 ◽  
Author(s):  
Warakom Suwanthai ◽  
Vittaya Punsuvon ◽  
Pilanee Vaithanomsat

In this research, calcium methoxide was synthesized as solid base catalyst from quick lime for biodiesel production. The catalyst was further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection fourier transform (ATR-FTIR) and Energy-dispersive X-ray spectroscopies (EDX) to evaluate its performance. The transesterification of refined palm oil using calcium methoxide and the process parameters affecting the fatty acid methyl ester (FAME) content such as catalyst concentration, methanol:oil molar ratio and reaction time were investigated. The results showed that the FAME content at 97% was achieved within 3 h using 3 %wt catalyst loading, 12:1 methanol:oil molar ratio and 65 °C reaction temperature. The result of FAME suggested calcium methoxide was the promising solid catalyst for substitution of the conventional liquid catalyst.


2015 ◽  
Vol 1113 ◽  
pp. 518-522 ◽  
Author(s):  
Mardhiah Mohamad ◽  
Norzita Ngadi ◽  
Nurul Saadiah Lani

Transesterification method was carried out in biodiesel production from cooking oil (CO). Calcium oxide (CaO) was selected as the best catalyst. This study investigated the effects of percentage conversion of oil to biodiesel from methanol to oil molar ratio and catalyst amount. Brunauer, Emmett and Teller (BET) test method was used to analyze the surface area. The results obtained showed that using 200°C calcined CaO catalyst, 76.67 % biodiesel was successfully converted from oil. This indicates that the cooking oil (CO) has potential to become a future source of biodiesel. 0.5 w/w% catalyst dosages, 3:5 oil to methanol molar ratio and 65°C reaction temperature are the best condition for the biodiesel conversion from oil. This study also shows that conversion of cooking oil is significantly affected by methanol to oil molar ratio and catalyst amount.


Sign in / Sign up

Export Citation Format

Share Document