3D Documentation of Cultural Heritage

Author(s):  
Eros Agosto ◽  
Paolo Ardissone ◽  
Leandro Bornaz ◽  
Fabio Dago

Metric surveys have a key role in managing Cultural Heritage. They are needed for a wide range of activities like documentation, study, restoration, and valorization. The importance of the 3D description of objects is widely accepted considering costs/benefits ratio and the opportunities it offers. In recent years, laser scanning and digital photogrammetry offered new perspectives, widening the options in 3D CH recording. Scientific research tends to see their integration as the best approach to CH description. 3D surveys are offering extra opportunities respect to the traditional production of metric supports as 3D models are the ideal base for true 3D information systems and open the way to immersive virtual reality environments. Digital technologies provide new ways to collaborate, record excavations, and restore artifacts in such a way, they are transforming the way CH practitioners work. This chapter attempts to review the methods for 3D digitization that are today available and discuss the possible use of 3D models beyond the pure extraction of reliable and accurate measurements.

Author(s):  
Eros Agosto ◽  
Leandro Bornaz

Metric surveys are a key component in Cultural Heritage. Metric surveys are in fact a basic input for a wide range of activities, from documentation to study, from restoration to valorization, that rely on the current condition of the monument. In recent years, laser scanning and, more recently, digital photogrammetry offered new perspectives, widening the perspectives of 3D Cultural Heritage recording. Digital technologies provide new ways to collaborate, record excavations, and restore artifacts, and in such a way they are transforming the way Cultural Heritage practitioners (researchers, archaeologists, curators) work. This paper attempts to review the methods for 3D digitization that are today available and discuss the possible use of 3D models beyond the pure extraction of reliable and accurate measures.


Author(s):  
D. Dominici ◽  
M. Alicandro ◽  
E. Rosciano ◽  
V. Massimi

Nowadays geomatic techniques can guarantee not only a precise and accurate survey for the documentation of our historical heritage but also a solution to monitor its behaviour over time after, for example, a catastrophic event (earthquakes, landslides, ecc). Europe is trying to move towards harmonized actions to store information on cultural heritage (MIBAC with the ICCS forms, English heritage with the MIDAS scheme, etc) but it would be important to provide standardized methods in order to perform measuring operations to collect certified metric data. The final result could be a database to support the entire management of the cultural heritage and also a checklist of “what to do” and “when to do it”. The wide range of geomatic techniques provides many solutions to acquire, to organize and to manage data at a multiscale level: high resolution satellite images can provide information in a short time during the “early emergency” while UAV photogrammetry and laser scanning can provide digital high resolution 3D models of buildings, ortophotos of roofs and facades and so on. This paper presents some multiscale survey case studies using UAV photogrammetry: from a minor historical village (Aielli) to the centre of L’Aquila (Santa Maria di Collemaggio Church) from the post-emergency to now. This choice has been taken not only to present how geomatics is an effective science for modelling but also to present a complete and reliable way to perform conservation and/or restoration through precise monitoring techniques, as shown in the third case study.


Author(s):  
A. Fryskowska ◽  
P. Walczykowski ◽  
P. Delis ◽  
M. Wojtkowska

One of the most important aspects of documenting cultural heritage sites is acquiring detailed and accurate data. A popular method of storing 3D information about historical structures is using 3D models. These models are built based on terrestrial or aerial laser scanning data. These methods are seldom used together. Historical buildings usually have a very complex design, therefore the input data, on the basis of which their 3D models are being built, must provide a high enough accuracy to model these complexities. The data processing methods used, as well as the modeling algorithms implemented, should be highly automated and universal. The main of the presented research was to analyze and compare various methods for extracting matching points. The article presents the results of combining data from ALS and TLS using reference points extracted both manually and automatically. Finally, the publication also includes an analysis of the accuracy of the data merging process.


Author(s):  
S. Tapinaki ◽  
M. Skamantzari ◽  
A. Anastasiou ◽  
S. Koutros ◽  
E. Syrokou ◽  
...  

Abstract. This paper focuses on the holistic 3D geometric documentation of four Cultural Heritage buildings, of different historic eras, on the island of Rhodes. The main scope was to produce the 3D models and all required products according to the needs and specifications set by the EU funded HYPERION project. The ideal combination of multi-source data acquisition and processing was employed, which is the modern perception for the methodology of geometric documentation of monuments. The workflow for the combination of geodetic, photogrammetric and laser scanning data acquisition methods is described in detail. Very decisive factor in carrying out fieldwork for data acquisition was the time frame, which was very limited due to the COVID-19 pandemic. The establishing of a holistic framework for the documentation of Cultural Heritage by carrying out a wide range of multidisciplinary research, acquiring and combining datasets from various sensors and sources, as well as by developing innovative tools for systematic monitoring gives substantial results in order to protect, preserve and enhance Cultural Heritage sites. The documentation results are presented and discussed for their usefulness for the project.


2012 ◽  
Vol 3 (5) ◽  
pp. 109 ◽  
Author(s):  
Roberto Scopigno

<p>Digital technologies are now mature for producing high quality digital replicas of Cultural Heritage (CH) artefacts. The research results produced in the last decade have shown an impressive evolution and consolidation of the technologies for acquiring high-quality digital 3D models (3D scanning) and for rendering those models at interactive speed. Technology is now mature enough to push us to go beyond the plain visualization of those assets, devising new tools able to extend our insight and intervention capabilities and to revise the current consolidated procedures for CH research and management. The paper presents a few recent experiences where high-quality 3D models have been used in CH research, restoration and conservation. These examples constitutes a broad review of different uses of digital 3D<br />assets in the CH domain.</p>


Author(s):  
P. Clini ◽  
L. Ruggeri ◽  
R. Angeloni ◽  
M. Sasso

Thanks to their playful and educational approach Virtual Museum systems are very effective for the communication of Cultural Heritage. Among the latest technologies Immersive Virtual Reality is probably the most appealing and potentially effective to serve this purpose; nevertheless, due to a poor user-system interaction, caused by an incomplete maturity of a specific technology for museum applications, it is still quite uncommon to find immersive installations in museums.<br> This paper explore the possibilities offered by this technology and presents a workflow that, starting from digital documentation, makes possible an interaction with archaeological finds or any other cultural heritage inside different kinds of immersive virtual reality spaces.<br> Two different cases studies are presented: the National Archaeological Museum of Marche in Ancona and the 3D reconstruction of the Roman Forum of Fanum Fortunae. Two different approaches not only conceptually but also in contents; while the Archaeological Museum is represented in the application simply using spherical panoramas to give the perception of the third dimension, the Roman Forum is a 3D model that allows visitors to move in the virtual space as in the real one.<br> In both cases, the acquisition phase of the artefacts is central; artefacts are digitized with the photogrammetric technique Structure for Motion then they are integrated inside the immersive virtual space using a PC with a HTC Vive system that allows the user to interact with the 3D models turning the manipulation of objects into a fun and exciting experience.<br> The challenge, taking advantage of the latest opportunities made available by photogrammetry and ICT, is to enrich visitors’ experience in Real Museum making possible the interaction with perishable, damaged or lost objects and the public access to inaccessible or no longer existing places promoting in this way the preservation of fragile sites.


Author(s):  
K. Zhan ◽  
D. Fritsch ◽  
J. F. Wagner

Abstract. Cultural heritage preservation via 3D digitization is becoming more and more important. Besides conventional buildings and landmarks, many technical instruments and artifacts, which belong to tech heritage (TH), are also of great importance, historically and didactically. Gyroscopes, which can be dated back for 200 years, are fascinating instruments with complex structures and different working principles. With such properties, any 3D digitization of Gyroscopes could not be realized by simply using conventional solutions of photogrammetry or laser scanning. In our work, we introduce photogrammetry, endoscopy and computed tomography (CT) for an integrated 3D digitization solution. Though photogrammetry has been widely used for the purpose of cultural heritage preservation, 3D reconstructions using the other two sensor systems have their own challenges. For an endoscope, a pre-calibration solution has been put forward and the Structure-from-Motion (SfM) process has been optimized to deal with the drift caused by a long imaging trajectory. Regarding the CT 3D reconstruction, we mainly focus on the 3D representation’s completeness and the denoising process. In the section of data integration, we designed different methods according to the characteristics of the objects as well as the 3D models from different sonsors. In case of limited overlap between the pair of point clouds, the Gauss-Helmert model with manually picked control points is applied for the estimation of the transformation matrix. CT point clouds, which hold only the intensity values representing the material attenuation, could be integrated with photogrammetry data via a surface color mapping method using the photogrammetric images or the primitive based corresponding virtual control points. Through our research, the concept of integrating photogrammetry, endoscopy and CT for 3D digitization of Gyroscopes is validated. Furthermore, advantages and disadvantages involved in the complete process are discussed and a solid foundation has been laid for further research.


Author(s):  
V. E. Oniga ◽  
A. I. Breaban ◽  
E. I. Alexe ◽  
C. Văsii

Abstract. Indoor mapping and modelling is an important research subject with application in a wide range of domains including interior design, real estate, cultural heritage conservation and restoration. There are multiple sensors applicable for 3D indoor modelling, but the laser scanning technique is frequently used because of the acquisition time, detailed information and accuracy. In this paper, the efficiency of the Maptek I-Site 8820 terrestrial scanner, which is a long-range laser scanner and the accuracy of a HMLS point cloud acquired with a mobile scanner, namely GeoSlam Zeb Horizon were tested for indoor mapping. Aula Magna “Carmen Silva” of the “Gheorghe Asachi” Technical University of Iasi is studied in the current paper since the auditorium interior creates a distinct environment that combines complex geometric structures with architectural lighting and for preserving its great cultural value, the monument has a national historical significance. The registration process of the TLS point clouds was done using two methods: a semi-automatic one with artificial targets and a completely automatic one, based on Iterative Closest Point (ICP) algorithm. The resulted TLS point cloud was analysed in relation to the HMLS point cloud by computing the M3C2 (Multiscale Model to Model Cloud Comparison), obtaining a standard deviation of 2.1 cm and by investigating the Hausdorff distances from which resulted a standard deviation (σ) of 1.6 cm. Cross-sections have been extracted from the HMLS and TLS point clouds and after comparing the sections, 80% of the sigma values are less or equal to 1 cm. The results show high potential of using HMLS and also a long-range laser scanner for 3D modelling of complex scenes, the occlusion effect in the case of TLS being only 5% of the scanned area.


Author(s):  
M. N. Koeva

Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria – a country with thousands of years of history and cultural heritage dating back to ancient civilizations. \this motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. &lt;br&gt;&lt;br&gt; In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study discusses the advantages and disadvantages of these three approaches and their integration in multiple domains, such as web-based 3D city modelling, tourism and architectural 3D visualization. It was concluded that image-based modelling and panoramic visualisation are simple, fast and effective techniques suitable for simultaneous virtual representation of many objects. However, additional measurements or CAD information will be beneficial for obtaining higher accuracy.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Abdalmenem Owda ◽  
José Balsa-Barreiro ◽  
Dieter Fritsch

Purpose Representative cultural heritage sites and monuments around the world have been lost or damaged by natural disasters, human conflicts and daily erosion and deterioration. Documentation and digital preservation by using three-dimensional (3D) modeling techniques enables to ensure the knowledge and access for future generations. Efficient working methods and techniques should be proposed for this purpose. Design/methodology/approach In this paper, a methodology for the generation of 3D photorealistic models of representative historical buildings is introduced, for using data are obtained using terrestrial laser scanning systems and photogrammetry. Findings In this paper, an approach to reconstruct 3D photorealistic models by using laser scanning and photogrammetric data is shown. Combination of data from both sources offers an improved solution for 3D reconstruction of historical buildings, sites and places. Integration of 3D models into virtual globes and/or software applications can ensure digital preservation and knowledge for next generations. Research limitations/implications Results obtained in a concrete building are shown. However, each building or studied area can show some other different drawbacks. Practical implications The study enables to generate 3D and four-dimensional models of most valuable buildings and contribute to the preservation and documentation of the cultural heritage. Social implications The study enables digital documentation and preservation of cultural heritage. Originality/value A proper solution at field (in a real and complicated case) is explained, in addition to the results, which are shown.


Sign in / Sign up

Export Citation Format

Share Document