Importance of Automation and Next-Generation IoT in Smart Healthcare

Author(s):  
Ahmed Alenezi ◽  
M. S. Irfan Ahamed

Generally, the sensors employed in healthcare are used for real-time monitoring of patients, such devices are termed IoT-driven sensors. These type of sensors are deployed for serious patients because of the non-invasive monitoring, for instance physiological status of patients will be monitored by the IoT-driven sensors, which gathers physiological information regarding the patient through gateways and later analysed by the doctors and then stored in cloud, which enhances quality of healthcare and lessens the cost burden of the patient. The working principle of IoT in remote health monitoring systems is that it tracks the vital signs of the patient in real-time, and if the vital signs are abnormal, then it acts based on the problem in patient and notifies the doctor for further analysis. The IoT-driven sensor is attached to the patient and transmits the data regarding the vital signs from the patient's location by employing a telecom network with a transmitter to a hospital that has a remote monitoring system that reads the incoming data about the patient's vital signs.

Author(s):  
R. Rajkumar

Internet of things is a revolutionary domain, when we use it for the wellness of people in a smart way. As of now, the cost to implement IoT-enabled services is very high. So, this chapter introduces a cost effective and a reliable system to monitor patients at home and in hospitals with the help of IoT. The monitored details of a person can be drawn at any time with the help of an android app, which can produce output at real-time. The processed data are stored in the UBIDOTS cloud server, and the patients' needs can be met in time as well lives saved during critical cases with the help of the system proposed in this chapter.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1089
Author(s):  
Tae Wuk Bae ◽  
Kee Koo Kwon ◽  
Kyu Hyung Kim

An important function in the future healthcare system involves measuring a patient’s vital signs, transmitting the measured vital signs to a smart device or a management server, analyzing it in real-time, and informing the patient or medical staff. Internet of Medical Things (IoMT) incorporates information technology (IT) into patient monitoring device (PMD) and is developing traditional measurement devices into healthcare information systems. In the study, a portable ubiquitous-Vital (u-Vital) system is developed and consists of a Vital Block (VB), a small PMD, and Vital Sign Server (VSS), which stores and manages measured vital signs. Specifically, VBs collect a patient’s electrocardiogram (ECG), blood oxygen saturation (SpO2), non-invasive blood pressure (NiBP), body temperature (BT) in real-time, and the collected vital signs are transmitted to a VSS via wireless protocols such as WiFi and Bluetooth. Additionally, an efficient R-point detection algorithm was also proposed for real-time processing and long-term ECG analysis. Experiments demonstrated the effectiveness of measurement, transmission, and analysis of vital signs in the proposed portable u-Vital system.


Author(s):  
Madison Arenchild ◽  
Anaeze C. Offodile ◽  
Lee Revere

Studies evaluating the cost and quality of healthcare services have produced inconsistent results. We seek to determine if higher paid hospitals have higher quality outcomes compared to those receiving lower payments, after accounting for clinical and market level factors. Using inpatient commercial claims from the IBM® MarketScan® Research Databases, we used an ordinal logistic regression to analyze the association between hospital median payments for elective hip and knee procedures and 3 quality outcomes: prolonged length of stay, complication rate, and 30-day readmission rate. Patient-level and market factor covariates were appropriately adjusted. Hospital-level payments were found to be not significantly correlated with hospital quality of care. This research suggests that higher payments cannot predict higher quality outcomes. This finding has implications for provider-payer negotiations, value-based insurance designs, strategies to increase high-value care provision, and consumer choices in an increasingly consumer-oriented healthcare landscape.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Muhammad Farrukh Khan ◽  
Taher M. Ghazal ◽  
Raed A. Said ◽  
Areej Fatima ◽  
Sagheer Abbas ◽  
...  

The Internet of Medical Things (IoMT) enables digital devices to gather, infer, and broadcast health data via the cloud platform. The phenomenal growth of the IoMT is fueled by many factors, including the widespread and growing availability of wearables and the ever-decreasing cost of sensor-based technology. The cost of related healthcare will rise as the global population of elderly people grows in parallel with an overall life expectancy that demands affordable healthcare services, solutions, and developments. IoMT may bring revolution in the medical sciences in terms of the quality of healthcare of elderly people while entangled with machine learning (ML) algorithms. The effectiveness of the smart healthcare (SHC) model to monitor elderly people was observed by performing tests on IoMT datasets. For evaluation, the precision, recall, fscore, accuracy, and ROC values are computed. The authors also compare the results of the SHC model with different conventional popular ML techniques, e.g., support vector machine (SVM), K-nearest neighbor (KNN), and decision tree (DT), to analyze the effectiveness of the result.


2020 ◽  
Vol 47 (3) ◽  
pp. 265-283
Author(s):  
Douglas Murphy ◽  
Denise Lester ◽  
F. Clay Smither ◽  
Ellie Balakhanlou

Neuropathic pain (NP) can have either central nervous system causes or ones from the peripheral nervous system. This article will focus on the epidemiology, classifications, pathology, non-invasive treatments and invasive treatments as a general review of NP involving the peripheral nervous system. NP has characteristic symptomatology such as burning and electrical sensations. It occurs in up to 10% of the general population. Its frequency can be attributed to its occurrence in neck and back pain, diabetes and patients receiving chemotherapy. There are a wide range of pharmacologic options to control this type of pain and when such measures fail, numerous interventional methods can be employed such as nerve blocks and implanted stimulators. NP has a cost to the patient and society in terms of emotional consequences, quality of life, lost wages and the cost of assistance from the medical system and thus deserves serious consideration for prevention, treatment and control.


2012 ◽  
Vol 468-471 ◽  
pp. 186-189
Author(s):  
Chen Cheng Weng ◽  
Hao Wu ◽  
Xiao Dong Liu ◽  
Zhao Yu Du ◽  
Lei Shi ◽  
...  

From the quality of foundation roller compaction perspective in large civil engineering, this paper integrated the high precision real-time position technology of GNSS and the spatial analysis function of GIS, constructed a foundation roller compaction quality monitoring system to realize the real-time monitoring of foundation roller compacted construction process, which can ensure the quality of this process . At the same time, based on expounding the rolling system structure and working principle, it is detailed introduce the system module and the key algorithms.


Author(s):  
HAN ZHANG ◽  
WEIWEI ZHU ◽  
SONGBIN YE ◽  
SIHUA LI ◽  
BAOXIAN YU ◽  
...  

Sleep apnea (SA) syndrome is a respiratory disorder that occurs during the sleep. Polysomnography (PSG) has been widely applied by clinicians as a gold standard in the clinical diagnosis of SA syndrome. However, the use of PSG is inconvenient, intrusive, and significantly affects the sleep quality of patient. In this paper, we provide a nonintrusive solution for SA detection. Specifically, a force sensor was employed for the noninvasive vital sign acquisition during the patient’s sleep, where the respiratory signal was extracted adaptively by using the morphological filter. It was observed that the morphological variations before and during the occurrence of the SA events were significant for the SA discrimination. By taking advantage of the differential features with respect to the respiratory signal, the recognition of the SA event was performed using classifiers. For validation, the all-night PSG recordings of 12 volunteers with 8 SA syndrome patients were obtained from the National Clinical Research Center for Respiratory Disease. Numerical results showed that the proposed scheme achieved an averaged accuracy, sensitivity and specificity of 83.67%, 58.57% and 85.13%, respectively, for the SA recognition.


This paper presents a real-time monitoring system with a novel approach to assess the human health status without the need for using a body sensor. The project mainly targets improving the quality of life for those living independently but still require close monitoring. Skin fluctuation of the human face is monitored real time with a high-speed camera to determine vital signs including the heart rate and blood pressure. A few image processing algorithms have been utilized to determine the image fluctuations and extract the related features and acquire vital signals. An algorithm assesses and evaluates the risks involved in irregular behaviors and takes follow up actions where required. The application has been implemented on two platforms and interfaced with a high-speed camera to evaluate the performance of the remote monitoring system in indoor situations.


2015 ◽  
Vol 19 (81) ◽  
pp. 1-246 ◽  
Author(s):  
Janine Dretzke ◽  
Deirdre Blissett ◽  
Chirag Dave ◽  
Rahul Mukherjee ◽  
Malcolm Price ◽  
...  

BackgroundChronic obstructive pulmonary disease (COPD) is a chronic progressive lung disease characterised by non-reversible airflow obstruction. Exacerbations are a key cause of morbidity and mortality and place a considerable burden on health-care systems. While there is evidence that patients benefit from non-invasive ventilation (NIV) in hospital during an acute exacerbation, evidence supporting home use for more stable COPD patients is limited. In the UK, domiciliary NIV is considered on health economic grounds in patients after three hospital admissions for acute hypercapnic respiratory failure.ObjectiveTo assess the clinical effectiveness and cost-effectiveness of domiciliary NIV by systematic review and economic evaluation.Data sourcesBibliographic databases, conference proceedings and ongoing trial registries up to September 2014.MethodsStandard systematic review methods were used for identifying relevant clinical effectiveness and cost-effectiveness studies assessing NIV compared with usual care or comparing different types of NIV. Risk of bias was assessed using Cochrane guidelines and relevant economic checklists. Results for primary effectiveness outcomes (mortality, hospitalisations, exacerbations and quality of life) were presented, where possible, in forest plots. A speculative Markov decision model was developed to compare the cost-effectiveness of domiciliary NIV with usual care from a UK perspective for post-hospital and more stable populations separately.ResultsThirty-one controlled effectiveness studies were identified, which report a variety of outcomes. For stable patients, a modest volume of evidence found no benefit from domiciliary NIV for survival and some non-significant beneficial trends for hospitalisations and quality of life. For post-hospital patients, no benefit from NIV could be shown in terms of survival (from randomised controlled trials) and findings for hospital admissions were inconsistent and based on limited evidence. No conclusions could be drawn regarding potential benefit from different types of NIV. No cost-effectiveness studies of domiciliary NIV were identified. Economic modelling suggested that NIV may be cost-effective in a stable population at a threshold of £30,000 per quality-adjusted life-year (QALY) gained (incremental cost-effectiveness ratio £28,162), but this is associated with uncertainty. In the case of the post-hospital population, results for three separate base cases ranged from usual care dominating to NIV being cost-effective, with an incremental cost-effectiveness ratio of less than £10,000 per QALY gained. All estimates were sensitive to effectiveness estimates, length of benefit from NIV (currently unknown) and some costs. Modelling suggested that reductions in the rate of hospital admissions per patient per year of 24% and 15% in the stable and post-hospital populations, respectively, are required for NIV to be cost-effective.LimitationsEvidence on key clinical outcomes remains limited, particularly quality-of-life and long-term (> 2 years) effects. Economic modelling should be viewed as speculative because of uncertainty around effect estimates, baseline risks, length of benefit of NIV and limited quality-of-life/utility data.ConclusionsThe cost-effectiveness of domiciliary NIV remains uncertain and the findings in this report are sensitive to emergent data. Further evidence is required to identify patients most likely to benefit from domiciliary NIV and to establish optimum time points for starting NIV and equipment settings.Future work recommendationsThe results from this report will need to be re-examined in the light of any new trial results, particularly in terms of reducing the uncertainty in the economic model. Any new randomised controlled trials should consider including a sham non-invasive ventilation arm and/or a higher- and lower-pressure arm. Individual participant data analyses may help to determine whether or not there are any patient characteristics or equipment settings that are predictive of a benefit of NIV and to establish optimum time points for starting (and potentially discounting) NIV.Study registrationThis study is registered as PROSPERO CRD42012003286.FundingThe National Institute for Health Research Health Technology Assessment programme.


Sign in / Sign up

Export Citation Format

Share Document