Antimicrobial Resistance and Antimicrobial Nanomaterials

Author(s):  
Muthupandian Saravanan ◽  
Melaku Ashagrie Belete ◽  
Selam Niguse ◽  
Ephrem Tsegay ◽  
Tadele Araya ◽  
...  

Back in the mid-nineties, the discovery of antimicrobials denoted a profound and remarkable achievement in medicine which was capable of saving lives. However, recently, antimicrobial resistance became a major global issue facing modern medicine and significantly increased among bacteria, fungi, and viruses which results in reduced efficacy of many clinically important and lifesaving antimicrobials. The growing rise of antimicrobial resistance inflicts a remarkable economic and social burden on the health care system globally. The replacement of conventional antimicrobials by new technology to counteract and lessen antimicrobial resistance is currently ongoing. Nanotechnology is an advanced approach to overcome challenges of such resisted conventional drug delivery systems mainly based on the development and fabrication of nanoparticulate structures. Numerous forms of nanoparticulate systems have been discovered and tried as prospective drug delivery systems, comprising organic and inorganic nanoparticles.

Author(s):  
Pandey Swarnima ◽  
Sushant Kumar

The paper is aimed to provide a comprehensive review on nanoparticles, methods of preparation, applications in drug delivery. In recent years, there has been an exponential interest within the development of novel drug delivery systems using nanoparticles. Nanoparticles offers significant advantages over the conventional drug delivery in terms of high stability, high specificity, high drug carrying capacity, ability for controlled release, possibility to use in several route of administration and therefore the capability to deliver both hydrophilic and hydrophobic drug molecules. This review focuses on classification, methods of preparation, characterization, application, advantages of nanoparticles and health perspectives.


2021 ◽  
Vol 18 ◽  
Author(s):  
Hitesh Chopra ◽  
Inderbir Singh ◽  
Sandeep Kumar ◽  
Tanima Bhattacharya ◽  
Md. Habibur Rahman ◽  
...  

: The conventional drug delivery systems have a long list of issues of repeated dosing and toxicity arising due to it. The hydrogels are the answer to them and offer a result that minimizes such activities and optimizes therapeutic benefits. The hydrogels proffer tunable properties that can withstand degradation, metabolism, and controlled release moieties. Some of the areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue, bone engineering, etc. They consist of about 90% of the water that makes them suitable bio-mimic moiety. Here, we present a birds-eye view of various perspectives of hydrogels, along with their applications.


2019 ◽  
Vol 39 (6) ◽  
pp. 2343-2396 ◽  
Author(s):  
Thanh‐Nhat Pham ◽  
Pauline Loupias ◽  
Alexandra Dassonville‐Klimpt ◽  
Pascal Sonnet

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2460
Author(s):  
Eden Mariam Jacob ◽  
Ankita Borah ◽  
Sindhu C Pillai ◽  
D. Sakthi Kumar

The human intestine, which harbors trillions of symbiotic microorganisms, may enter into dysbiosis when exposed to a genetic defect or environmental stress. The naissance of chronic inflammation due to the battle of the immune system with the trespassing gut bacteria leads to the rise of inflammatory bowel disease (IBD). Though the genes behind the scenes and their link to the disease are still unclear, the onset of IBD occurs in young adults and has expanded from the Western world into the newly industrialized countries. Conventional drug deliveries depend on a daily heavy dosage of immune suppressants or anti-inflammatory drugs targeted for the treatment of two types of IBD, ulcerative colitis (UC) and Crohn’s disease (CD), which are often associated with systemic side effects and adverse toxicities. Advances in oral delivery through nanotechnology seek remedies to overcome the drawbacks of these conventional drug delivery systems through improved drug encapsulation and targeted delivery. In this review, we discuss the association of genetic factors, the immune system, the gut microbiome, and environmental factors like diet in the pathogenesis of IBD. We also review the various physiological concerns required for oral delivery to the gastrointestinal tract (GIT) and new strategies in nanotechnology-derived, colon-targeting drug delivery systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-31
Author(s):  
Antonio Vassallo ◽  
Maria Francesca Silletti ◽  
Immacolata Faraone ◽  
Luigi Milella

Today’s human society, product of decades of progress in all fields of knowledge, would have been unimaginable without the discovery of antibiotics and more generally of antimicrobials. However, from the beginning, the scientific community was aware that microorganisms through various strategies were able to hinder and render vain antibiotic action. Common examples are the phenomena of persistence, tolerance, and resistance, up to the creation of the feared bacterial biofilms. Antibiotics are a precious but equally labile resource that must be preserved but at the same time reinforced to safeguard their effectiveness. Nanoparticulate systems such as nanobactericides, with their inherent antibacterial activity, and nanocarriers, which operate as drug delivery systems for conventional antibiotics, are innovative therapies made available by nanotechnology. Inorganic nanoparticles are effective both as nanobactericides (AgNPs, ZnONPs, and TiO2NPs) and as nanocarriers (AgNPs, AuNPs, ZnONPs, and TiO2NPs) against sensitive and multi-drug-resistant bacterial strains. Liposomes are among the most studied and flexible antibiotic delivery platforms: conventional liposomes allow passive targeting at the mononuclear phagocytic system (MPS); “stealth” liposomes prevent macrophage uptake so as to eradicate infections in tissues and organs outside MPS; thanks to their positive charge, cationic liposomes interact preferentially with bacterial and biofilm surfaces, acting as innate antibacterials as well as drug delivery systems (DDS); fusogenic liposomes have fluid bilayers that promote fusion with microbial membranes; and finally, ligand-targeted liposomes provide active targeting at infection sites. Dendrimers are among the most recent and attractive nanoparticulate systems, thanks to their multibranched nanoarchitecture, which equipped them with multiple active sites for loading antibiotics and also interacting with bacteria. Finally, nanoantibiotics represent a new hopeful generation of antibiotic candidates capable of increasing or even restoring the clinical efficacy of “old” antibiotics rendered useless by the resistance phenomena.


Author(s):  
SWAMINATHAN V. ◽  
VAIYANA RAJESH C.

The objective of the review is to present the contemporary approaches involved in colonic drug targeting for the therapy of inflammatory bowel disease (IBD). The adverse reactions and side-effects of the conventional drug delivery systems are largely on account of the systemic absorption of the drugs from the small intestine. Moreover, in current drug delivery systems, the drug has to be frequently administered and also in larger doses which greatly reduces patient compliance. Various approaches which are being described here mainly target the colonic region specifically for improved therapy of IBD, by increasing localization and accessibility of the drug to the target site. Also, these approaches will result in the reduction of dose and minimization of adverse effects combined with the use of conventional drug delivery systems.


2021 ◽  
Vol 11 (2) ◽  
pp. 44-49
Author(s):  
ANJALI CHOURASIYA ◽  
◽  
NARENDRA GEHALOT ◽  
SURESH CHANDRA MAHAJAN ◽  
◽  
...  

NDDS is advanced drug delivery system which improves drug potency, control drug release to give a sustained therapeutic effect, provide greater safety, finally it is to target a drug specifically to a desired tissue. Novel drug delivery system have been developed to overcome the limitation of conventional drug delivery systems, such as of gastric retention by decreasing fluctuations in the concentration of the drug in blood,resulting in the reduction in unwanted toxicity and poor efficiency. As compared to traditional dosage forms bilayer tablets are more efficient for sequential release of two drugs that can be different or identical. Bilayer tablet is also capable of separating two incompatible substances and also for sustained release. Gastro retentive drug delivery system retains the period of dosage forms in the stomach or upper gastro intes-tinal tract ,as to improve bioavailability and the therapeutic efficacy of the drugs. Mainly the bilayer drug delivery system is suitable for drugs whose therapethic windows are narrow in the gastrointestinal tract (GIT) and also they have low elimination half life: 3-4 h. The purpose of this review is to disclose the challenges faced during the formulation of bilayer tablets. Finally, the whole article is firmly analyzed in a concluding paragraph. KEYWORDS: Conventional drug delivery systems, Bilayer tablet, Gastro retentive, Bioavailability


2021 ◽  
Vol 07 ◽  
Author(s):  
Sumit Aroraa ◽  
Veerendra Dhoke ◽  
Keshav Moharir ◽  
Subhash Yende ◽  
Sapan Shah

: Herbal extracts and isolated bioactives from plants have proven their therapeutic activities as evidenced by preclinical and clinical research. However, there seems some disconnect in their clinical utility as marked by lack of proper delivery mechanism at desired sites of action. This glitch nowadays is a task for global research activity and being addressed in the form of novel drug delivery systems. A steady progress is observed in integrating novel techniques of drug delivery with successful incorporation of phytochemicals marked by scores of advantages. Limitations of conventional drug delivery systems are overcome to considerable extent by innovative drug delivery methods which show improvement in targeted drug delivery, drug distribution, and protection of active substance, prolonged action and stability. The perspective of this review thus focuses on the progress in novel drug delivery systems with spotlight on nanocarriers for herbal active agents, their preparation methods with types, examples of active ingredients incorporated and biomedical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1251
Author(s):  
Lide Arana ◽  
Lucia Gallego ◽  
Itziar Alkorta

Antimicrobial resistance is one of the biggest threats to global health as current antibiotics are becoming useless against resistant infectious pathogens. Consequently, new antimicrobial strategies are urgently required. Drug delivery systems represent a potential solution to improve current antibiotic properties and reverse resistance mechanisms. Among different drug delivery systems, solid lipid nanoparticles represent a highly interesting option as they offer many advantages for nontoxic targeted drug delivery. Several publications have demonstrated the capacity of SLNs to significantly improve antibiotic characteristics increasing treatment efficiency. In this review article, antibiotic-loaded solid lipid nanoparticle-related works are analyzed to summarize all information associated with applying these new formulations to tackle the antibiotic resistance problem. The main antimicrobial resistance mechanisms and relevant solid lipid nanoparticle characteristics are presented to later discuss the potential of these nanoparticles to improve current antibiotic treatment characteristics and overcome antimicrobial resistance mechanisms. Moreover, solid lipid nanoparticles also offer new possibilities for other antimicrobial agents that cannot be administrated as free drugs. The advantages and disadvantages of these new formulations are also discussed in this review. Finally, given the progress of the studies carried out to date, future directions are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Huu Ngoc Nguyen ◽  
Santa Romero Jovel ◽  
Tu Hoang Khue Nguyen

Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document