scholarly journals Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Huu Ngoc Nguyen ◽  
Santa Romero Jovel ◽  
Tu Hoang Khue Nguyen

Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.

World Science ◽  
2020 ◽  
Vol 1 (6(58)) ◽  
pp. 32-37 ◽  
Author(s):  
Olga Bilan ◽  
Iryna Brubaker ◽  
Kateryna Marchenko-Tolsta

The review investigates the latest developments in the field of application of nanotechnologies in the transportation of therapeutic agents, features and the advantages of using nanoscale drug delivery systems for the treatment of diseases, as well as further prospects of using this field in medicine. Modern drug delivery systems are characterized by target orientation, rapid response to the environment and the use of biocompatible and biodegradable nanomaterials which allow for the development of the next generation of more effective drugs. Interdisciplinary research in this fast-growing field provides opportunities to design and develop multifunctional devices that can accurately target and successfully administer the release and distribution of active ingredients in the body.


2020 ◽  
Vol 26 (42) ◽  
pp. 5488-5502 ◽  
Author(s):  
Yub Raj Neupane ◽  
Asiya Mahtab ◽  
Lubna Siddiqui ◽  
Archu Singh ◽  
Namrata Gautam ◽  
...  

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases. These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.


Author(s):  
Smriti Sharma ◽  
Vinayak Bhatia

: In this review nanoscale based drug delivery systems particularly in relevance to the antiglaucoma drugs have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery, is an ideal option to target tumours and drug can be released at areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood–retinal barrier, corneal epithelium and the blood–aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us in understand the existing queries and evidence gaps and will pave way for effective design of novel ocular drug delivery systems


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


2016 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Julia Modrejewski ◽  
Johanna-Gabriela Walter ◽  
Imme Kretschmer ◽  
Evren Kemal ◽  
Mark Green ◽  
...  

AbstractThe purpose of this study was to develop a model system for targeted drug delivery. This system should enable targeted drug release at a certain tissue in the body. In conventional drug delivery systems, drugs are often delivered unspecifically resulting in unwarranted adverse effects. To circumvent this problem, there is an increasing demand for the development of intelligent drug delivery systems allowing a tissue-specific mode of delivery. Within this study, nanoparticles consisting of two biocompatible polymers are used. Because of their small size, nanoparticles are well-suited for effective drug delivery. The small size affects their movement through cell and tissue barriers. Their cellular uptake is easier when compared to larger drug delivery systems. Paclitaxel was encapsulated into the nanoparticles as a model drug, and to achieve specific targeting an aptamer directed against lung cancer cells was coupled to the nanoparticles surface. Nanoparticles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), and nanotracking analysis (NTA). Also their surface charge was characterized from ζ-potential measurements. Their preparation was optimized and subsequently specificity of drug-loaded and aptamer-functionalized nanoparticles was investigated using lung cancer cells.


2021 ◽  
Vol 18 ◽  
Author(s):  
Panoraia I. Siafaka ◽  
Gökce Mutlu ◽  
Neslihan Üstündağ Okur

Background: Dementia and its related types such as Alzheimer’s disease, vascular dementia and mixed dementia belong to brain associated diseases, resulting in long-term progressive memory loss. These diseases are so severe that can affect a person's daily routine. Up to date, treatment of de- mentias is still an unmet challenge due to their complex pathophysiology and unavailable efficient pharmacological approaches. The use of nanotechnology based pharmaceutical products could possibly improve the management of dementia given that nanocarriers could more efficiently deliver drugs to the brain. Objective: The objective of this study is to provide the current nanotechnology based drug delivery systems for the treatment of various dementia types. In addition, the current diagnosis biomarkers for the mentioned dementia types along with their available pharmacological treatment are being dis- cussed. Method: An extensive review of the current nanosystems such as brain drug delivery systems against Alzheimer’s disease, vascular dementia and mixed dementia was performed. Moreover, nan- otheranostics as possible imaging markers for such dementias were also reported. Results: The field of nanotechnology is quite advantageous for targeting dementia given that nanoscale drug delivery systems easily penetrate the blood brain barrier and circulate in the body for prolonged time. These nanoformulations consist of polymeric nanoparticles, solid lipid nanoparticles, nanostruc- tured lipid carriers, microemulsions, nanoemulsions, and liquid crystals. The delivery of the nan- otherapeutics can be achieved via various administration routes such as transdermal, injectable, oral, and more importantly, through the intranasal route. Nonetheless, the nanocarriers are mostly limited to Alzheimer’s disease targeting; thus, nanocarriers for other types of dementia should be developed. Conclusion: To conclude, understanding the mechanism of neurodegeneration and reviewing the cur- rent drug delivery systems for Alzheimer’s disease and other dementia types are significant for medical and pharmaceutical society to produce efficient therapeutic choices and novel strategies based on mul- tifunctional and biocompatible nanocarriers, which can deliver the drug sufficiently into the brain.


2018 ◽  
Vol 244 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Stephen J. Jones ◽  
Annette F. Taylor ◽  
Paul A Beales

Nanomedicines for controlled drug release provide temporal and spatial regulation of drug bioavailability in the body. The timing of drug release is usually engineered either for slow gradual release over an extended period of time or for rapid release triggered by a specific change in its physicochemical environment. However, between these two extremes, there is the desirable possibility of adaptive nanomedicines that dynamically modulate drug release in tune with its changing environment. Adaptation and response through communication with its environment is a fundamental trait of living systems; therefore, the design of biomimetic nanomedicines through the approaches of bottom-up synthetic biology provides a viable route to this goal. This could enable drug delivery systems to optimize release in synchronicity with the body’s natural biological rhythms and the personalized physiological characteristics of the patient, e.g. their metabolic rate. Living systems achieve this responsiveness through feedback-controlled biochemical processes that regulate their functional outputs. Towards this goal of adaptive drug delivery systems, we review the general benefits of nanomedicine formulations, provide existing examples of experimental nanomedicines that encapsulate the metabolic function of enzymes, and give relevant examples of feedback-controlled chemical systems. These are the underpinning concepts that hold promise to be combined to form novel adaptive release systems. Furthermore, we motivate the advantages of adaptive release through chronobiological examples. By providing a brief review of these topics and an assessment of the state of the art, we aim to provide a useful resource to accelerate developments in this field. Impact statement The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel “chrononanomedicines.”


2020 ◽  
Vol 2020 ◽  
pp. 1-31
Author(s):  
Antonio Vassallo ◽  
Maria Francesca Silletti ◽  
Immacolata Faraone ◽  
Luigi Milella

Today’s human society, product of decades of progress in all fields of knowledge, would have been unimaginable without the discovery of antibiotics and more generally of antimicrobials. However, from the beginning, the scientific community was aware that microorganisms through various strategies were able to hinder and render vain antibiotic action. Common examples are the phenomena of persistence, tolerance, and resistance, up to the creation of the feared bacterial biofilms. Antibiotics are a precious but equally labile resource that must be preserved but at the same time reinforced to safeguard their effectiveness. Nanoparticulate systems such as nanobactericides, with their inherent antibacterial activity, and nanocarriers, which operate as drug delivery systems for conventional antibiotics, are innovative therapies made available by nanotechnology. Inorganic nanoparticles are effective both as nanobactericides (AgNPs, ZnONPs, and TiO2NPs) and as nanocarriers (AgNPs, AuNPs, ZnONPs, and TiO2NPs) against sensitive and multi-drug-resistant bacterial strains. Liposomes are among the most studied and flexible antibiotic delivery platforms: conventional liposomes allow passive targeting at the mononuclear phagocytic system (MPS); “stealth” liposomes prevent macrophage uptake so as to eradicate infections in tissues and organs outside MPS; thanks to their positive charge, cationic liposomes interact preferentially with bacterial and biofilm surfaces, acting as innate antibacterials as well as drug delivery systems (DDS); fusogenic liposomes have fluid bilayers that promote fusion with microbial membranes; and finally, ligand-targeted liposomes provide active targeting at infection sites. Dendrimers are among the most recent and attractive nanoparticulate systems, thanks to their multibranched nanoarchitecture, which equipped them with multiple active sites for loading antibiotics and also interacting with bacteria. Finally, nanoantibiotics represent a new hopeful generation of antibiotic candidates capable of increasing or even restoring the clinical efficacy of “old” antibiotics rendered useless by the resistance phenomena.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (9) ◽  
pp. 47-49 ◽  
Author(s):  
Robert Langer

For many years, drug delivery systems were composed of simple pills, eyedrops, ointments, or intravenous solutions. Recently, materials have begun to play a major role in improving drug delivery. Drugs are now chemically attached to polymers, entrapped in small vesicles that are injected into the bloodstream, or put in pumps or polymeric materials that are placed in the body. These new materials-based systems are beginning to change the way drugs can be administered and, in so doing, have improved human health. This article provides a brief review of the major classes of drug delivery systems; a recent paper discusses these issues in detail.Chemically attaching a drug to a polymer may alter such properties as its distribution in the body, rate of appearance in certain tissues, solubility, or antigenicity. For example, drugs have been linked to soluble macromolecules such as proteins, polysaccharides, or synthetic polymers via degradable linkages. This alters the drug's size and other properties, resulting in a different bodily drug distribution pattern. One example involves coupling the antitumor agent neocarzinostatin to styrene-maleic acid copolymers. When this complex was injected intra-arterially in patients with liver cancer, tumor size decreased significantly. In animals, the antitumor agent, doxorubicin, bound to N(2-hydroxypropyl) methacrylamide copolymers reduced toxicity. The plasma half-life and the drug levels in the tumor increased while the concentrations in the rest of the body decreased.


2014 ◽  
Vol 2 (20) ◽  
pp. 3133-3141 ◽  
Author(s):  
Claire Jouannin ◽  
Corine Tourné-Péteilh ◽  
Vincent Darcos ◽  
Tahmer Sharkawi ◽  
Jean-Marie Devoisselle ◽  
...  

API-ILs were encapsulated into biocompatible PLLA. The morphology and crystallinity of the resulting membranes can be tuned by varying the IL nature and content leading to controlled release.


Sign in / Sign up

Export Citation Format

Share Document