An Unequal Partnership

Author(s):  
Brandi L. Newkirk-Turner ◽  
Lekeitha R. Morris

This chapter addresses what Rickford referred to as an unequal partnership between researchers and the researched. In this chapter, Rickford's assertion of an unequal partnership within the field of sociolinguistics is extended to the field of communication sciences and disorders (CSD). A summary of the CSD literature on the Black speech community identifies shortcomings, leading the authors to argue that more can be done to equalize the partnership between CSD researchers and the Black speech community. The authors make the case for the establishment of service-in-return as a general principle of CSD research – especially when the researched community is a minority, marginalized, or underserved community. Ideas of ways that researchers can give back to the researched communities are provided. The authors also suggest ways that researchers can foster a sense of civic responsibility in student researchers in order to usher in a new generation of researchers who are more committed than past generations to equalizing the partnership between researchers and researched communities.

2017 ◽  
Vol 8 (3) ◽  
pp. 421-446
Author(s):  
Mehdi Sarkhosh ◽  
Ali Alizadeh

Abstract The majority of studies on compliment response (CR) have investigated CR patterns and norms among different cultural groups and communities. The present study investigated the shifting of CR patterns across generations within the same speech community. To this end, 272 Persian speakers were chosen from among high school students and teachers. A discourse completion task (DCT) with four complimenting situations was administered. The findings revealed that the new generation of Persian speakers, regardless of their gender, had shifted their CR patterns and overwhelmingly accepted compliments. This change is attributed to the changing interpretations and conceptions of politeness and to the influx of English culture, through exposure to English media, internet, TV series, films, etc., among the new generation of Persian speakers.


Author(s):  
D. Cherns

The use of high resolution electron microscopy (HREM) to determine the atomic structure of grain boundaries and interfaces is a topic of great current interest. Grain boundary structure has been considered for many years as central to an understanding of the mechanical and transport properties of materials. Some more recent attention has focussed on the atomic structures of metalsemiconductor interfaces which are believed to control electrical properties of contacts. The atomic structures of interfaces in semiconductor or metal multilayers is an area of growing interest for understanding the unusual electrical or mechanical properties which these new materials possess. However, although the point-to-point resolutions of currently available HREMs, ∼2-3Å, appear sufficient to solve many of these problems, few atomic models of grain boundaries and interfaces have been derived. Moreover, with a new generation of 300-400kV instruments promising resolutions in the 1.6-2.0 Å range, and resolutions better than 1.5Å expected from specialist instruments, it is an appropriate time to consider the usefulness of HREM for interface studies.


Author(s):  
Jorge Perdigao

In 1955, Buonocore introduced the etching of enamel with phosphoric acid. Bonding to enamel was created by mechanical interlocking of resin tags with enamel prisms. Enamel is an inert tissue whose main component is hydroxyapatite (98% by weight). Conversely, dentin is a wet living tissue crossed by tubules containing cellular extensions of the dental pulp. Dentin consists of 18% of organic material, primarily collagen. Several generations of dentin bonding systems (DBS) have been studied in the last 20 years. The dentin bond strengths associated with these DBS have been constantly lower than the enamel bond strengths. Recently, a new generation of DBS has been described. They are applied in three steps: an acid agent on enamel and dentin (total etch technique), two mixed primers and a bonding agent based on a methacrylate resin. They are supposed to bond composite resin to wet dentin through dentin organic component, forming a peculiar blended structure that is part tooth and part resin: the hybrid layer.


Author(s):  
S. J. Krause ◽  
W.W. Adams ◽  
S. Kumar ◽  
T. Reilly ◽  
T. Suziki

Scanning electron microscopy (SEM) of polymers at routine operating voltages of 15 to 25 keV can lead to beam damage and sample image distortion due to charging. Imaging polymer samples with low accelerating voltages (0.1 to 2.0 keV), at or near the “crossover point”, can reduce beam damage, eliminate charging, and improve contrast of surface detail. However, at low voltage, beam brightness is reduced and image resolution is degraded due to chromatic aberration. A new generation of instruments has improved brightness at low voltages, but a typical SEM with a tungsten hairpin filament will have a resolution limit of about 100nm at 1keV. Recently, a new field emission gun (FEG) SEM, the Hitachi S900, was introduced with a reported resolution of 0.8nm at 30keV and 5nm at 1keV. In this research we are reporting the results of imaging coated and uncoated polymer samples at accelerating voltages between 1keV and 30keV in a tungsten hairpin SEM and in the Hitachi S900 FEG SEM.


Author(s):  
Thomas J. Deerinck ◽  
Maryann E. Martone ◽  
Varda Lev-Ram ◽  
David P. L. Green ◽  
Roger Y. Tsien ◽  
...  

The confocal laser scanning microscope has become a powerful tool in the study of the 3-dimensional distribution of proteins and specific nucleic acid sequences in cells and tissues. This is also proving to be true for a new generation of high contrast intermediate voltage electron microscopes (IVEM). Until recently, the number of labeling techniques that could be employed to allow examination of the same sample with both confocal and IVEM was rather limited. One method that can be used to take full advantage of these two technologies is fluorescence photooxidation. Specimens are labeled by a fluorescent dye and viewed with confocal microscopy followed by fluorescence photooxidation of diaminobenzidine (DAB). In this technique, a fluorescent dye is used to photooxidize DAB into an osmiophilic reaction product that can be subsequently visualized with the electron microscope. The precise reaction mechanism by which the photooxidation occurs is not known but evidence suggests that the radiationless transfer of energy from the excited-state dye molecule undergoing the phenomenon of intersystem crossing leads to the formation of reactive oxygen species such as singlet oxygen. It is this reactive oxygen that is likely crucial in the photooxidation of DAB.


Author(s):  
S.J. Krause ◽  
W.W. Adams

Over the past decade low voltage scanning electron microscopy (LVSEM) of polymers has evolved from an interesting curiosity to a powerful analytical technique. This development has been driven by improved instrumentation and in particular, reliable field emission gun (FEG) SEMs. The usefulness of LVSEM has also grown because of an improved theoretical and experimental understanding of sample-beam interactions and by advances in sample preparation and operating techniques. This paper will review progress in polymer LVSEM and present recent results and developments in the field.In the early 1980s a new generation of SEMs produced beam currents that were sufficient to allow imaging at low voltages from 5keV to 0.5 keV. Thus, for the first time, it became possible to routinely image uncoated polymers at voltages below their negative charging threshold, the "second crossover", E2 (Fig. 1). LVSEM also improved contrast and reduced beam damage in sputter metal coated polymers. Unfortunately, resolution was limited to a few tenths of a micron due to the low brightness and chromatic aberration of thermal electron emission sources.


Author(s):  
John L. Hutchison

Over the past five years or so the development of a new generation of high resolution electron microscopes operating routinely in the 300-400 kilovolt range has produced a dramatic increase in resolution, to around 1.6 Å for “structure resolution” and approaching 1.2 Å for information limits. With a large number of such instruments now in operation it is timely to assess their impact in the various areas of materials science where they are now being used. Are they falling short of the early expectations? Generally, the manufacturers’ claims regarding resolution are being met, but one unexpected factor which has emerged is the extreme sensitivity of these instruments to both floor-borne and acoustic vibrations. Successful measures to counteract these disturbances may require the use of special anti-vibration blocks, or even simple oil-filled dampers together with springs, with heavy curtaining around the microscope room to reduce noise levels. In assessing performance levels, optical diffraction analysis is becoming the accepted method, with rotational averaging useful for obtaining a good measure of information limits. It is worth noting here that microscope alignment becomes very critical for the highest resolution.In attempting an appraisal of the contributions of intermediate voltage HREMs to materials science we will outline a few of the areas where they are most widely used. These include semiconductors, oxides, and small metal particles, in addition to metals and minerals.


2021 ◽  
Author(s):  
Jintong Liu ◽  
Jing Huang ◽  
Lei Zhang ◽  
Jianping Lei

We review the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy.


2019 ◽  
Vol 62 (5) ◽  
pp. 1243-1257 ◽  
Author(s):  
Peggy Pik Ki Mok ◽  
Holly Sze Ho Fung ◽  
Vivian Guo Li

Purpose Previous studies showed early production precedes late perception in Cantonese tone acquisition, contrary to the general principle that perception precedes production in child language. How tone production and perception are linked in 1st language acquisition remains largely unknown. Our study revisited the acquisition of tone in Cantonese-speaking children, exploring the possible link between production and perception in 1st language acquisition. Method One hundred eleven Cantonese-speaking children aged between 2;0 and 6;0 (years;months) and 10 adolescent reference speakers participated in tone production and perception experiments. Production materials with 30 monosyllabic words were transcribed in filtered and unfiltered conditions by 2 native judges. Perception accuracy was based on a 2-alternative forced-choice task with pictures covering all possible tone pair contrasts. Results Children's accuracy of production and perception of all the 6 Cantonese tones was still not adultlike by age 6;0. Both production and perception accuracies matured with age. A weak positive link was found between the 2 accuracies. Mother's native language contributed to children's production accuracy. Conclusions Our findings show that production and perception abilities are associated in tone acquisition. Further study is needed to explore factors affecting production accuracy in children. Supplemental Material https://doi.org/10.23641/asha.7960826


Sign in / Sign up

Export Citation Format

Share Document