Elaborative Investigation of Blockchain Technology in Intelligent Networks

2022 ◽  
pp. 60-79
Author(s):  
Dhaya R. ◽  
Kanthavel R.

The fifth generation (5G) network advancements focus to help mixed upright applications by associating heterogeneous gadgets and machines with extreme upgrades regarding high quality of administration, extended organization limit, and improved framework throughput regardless of significant difficulties like decentralization, straightforwardness, dangers of information interoperability, network protection, and security weaknesses. The challenges and limitations of other intelligent 5G intelligent internet of networks (5G IoTs) are also to be met by using blockchain technology with the integration of cloud computing and edge computing technologies. In this chapter, the authors render an elaborated analytics of the empowering of blockchain technology in intelligent networks that includes 5G networks and 5G-based IoT. The solutions for the spectrum management, data sharing, security, and privacy in 5G networks will also be analyzed. It is believed that the chapter would be useful for researchers in the field of blockchain in intelligent networks.

Author(s):  
Phudit Ampririt ◽  
Ermioni Qafzezi ◽  
Kevin Bylykbashi ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
...  

The fifth generation (5G) network is expected to be flexible to satisfy quality of service (QoS) requirements, and the software-defined network (SDN) with network slicing will be a good approach for admission control. In this paper, the authors present and compare two fuzzy-based schemes to evaluate the QoS (FSQoS). They call these schemes FSQoS1 and FSQoS2. The FSQoS1 considers three parameters: slice throughput (ST), slice delay (SD), and slice loss (SL). In FSQoS2, they consider as an additional parameter the slice reliability (SR). So, FSQoS2 has four input parameters. They carried out simulations for evaluating the performance of the proposed schemes. From simulation results, they conclude that the considered parameters have different effects on the QoS performance. The FSQoS2 is more complex than FSQoS1, but it has a better performance for evaluating QoS. When ST and SR are increasing, the QoS parameter is increased. But, when SD and SL are increasing, the QoS is decreased. When ST is 0.1, SD is 0.1, SL is 0.1, and the QoS is increased by 32.02% when SR is increased from 0.3 to 0.8.


LastMile ◽  
2021 ◽  
Vol 98 (6) ◽  
Author(s):  
A. Ivashkin

Today, many countries around the world are actively building fifth generation mobile networks (5G/IMT-2020). The magazine Last Mile asked the director of the Republican unitary enterprise for supervision on telecommunications "BelGIE" of the Republic of Belarus (hereinafter: State Enterprise "BelGIE") A.A. Ivashkin about the situation with the implementation of the 5G network in the Republic of Belarus.


Due to revolutionary development in electronic and communication, mobile and handheld devices become the part of our daily life. As a result, volume of data traffic on Internet is increasing day by day. To provide unlimited, uninterrupted and content-rich services to these devices, the 5th Generation (5G) of network technology is emerged. 5G network can provide better Quality of Service (QoS) along with higher data rates than 4G network and have least latency. The paper appraisals various generations of wireless networks. Furthermore, it explores various challenges in implementation of 5G network and application areas of 5G network


2021 ◽  
Vol 5 (2) ◽  
pp. 419-427
Author(s):  
Kareem A. Bakare ◽  
Lawal Idris Bagiwa ◽  
M. M. Nafisa ◽  
Auwa Abdulsalam

The 5G networks stand for fifth generation mobile technology and can outperform earlier versions of wireless communication technology. The new technology provides diverse abilities and encourages full networking among countries globally. Fifth Generation (5G) wireless communication network development was an initiative in furtherance to the current Fourth Generation (4G) wireless communication network technology. The 5G networks for future applications in all domains provide prospects for a fully connected society. The proliferation of all connectivity between the devices provides a broader range of new governance, business structures, health care delivery, Economic growth and insecurity reduction which subsequently paves a path towards different industry profiles, such as energy, Communication and manufacturing sectors. This paper discusses the Concept of 5G Network, 5G network implementation strategies and technology requirements, deployment challenges as well as suggestions on the way forward based on Nigerian context


2014 ◽  
Vol 5 (3) ◽  
pp. 60-72 ◽  
Author(s):  
Sanjay Kumar Biswash ◽  
Santosh Nagaraj ◽  
Mahasweta Sarkar

Fifth Generation (5G) networks hold the promise of features and performance levels that is going to put the conventional cellular communication paradigm through rigorous challenges. This paper presents a novel architecture for a 5G network which will be capable of mobile device centric communication regardless of the presence of a Base Station (BS). The major contribution of this paper, lies in the proposed system and protocol design of a Device-to-Device (D2D) communication system for 5G mobile system. The proposed design has two sub-categories – (a) fully device centric and (b) partially device centric. Additionally, the devices have been designed to communicate independently or with partial dependency on support from the BS. The system has been simulated under various parameters. The simulation results showcased in this paper highlights the efficiency and effectiveness of the proposed design.


2021 ◽  
Vol 9 (1) ◽  
pp. 1099-1109
Author(s):  
Sakthibalan P., Devarajan K.

The fifth-generation (5G) network assimilates terahertz bandwidth and machine type communication (MTC) for swift and reliable data transfer and information exchange. It incorporates sophisticated cloud, Internet of Things (IoT), and other software-defined architectures for providing scalable service support. However, due to the heterogeneous integration of devices and architectures, secure infrastructures needto become mandatory. In this article, a Blockchain-based Versatile Security Framework (BVSF) is introduced to provide robust and adaptable authentication and access control in the 5G environment. The proposed framework allocates blocks for user equipment (UE) authentication and resource access control in a parallel manner. The verification of security level between resources, infrastructures, and UEs aids in extending or attenuating blockchain services. Based on the different security level assessments, the UE requests are precisely mapped or reallocated to the resources, improving the response rate and the framework adaptability.


2021 ◽  
Author(s):  
suji helen ◽  
C. Senthilsingh

Abstract The 5G networks are about to deploy it all over the world. This 5G technologies support by connecting the devices with rapid growth in network capacity, high QoS. Apart from this feature, 5G has more advantages in security, decentralization, transparency, data interoperability. The 5G network has millions of IoT devices are connected. With higher speeds these devices are enabled and worked with high speed. Blockchain is an important technology in the current trend. The Blockchain technology is used in more fields such as online payments, healthcare, smart contracts etc. Extending the technology of block chain to Internet of things (IoT) can have more features. The important issues in 5G technology is security because millions of IoT devices are connected and more confidential data is transferred. This data should be more secure using blockchain technology. This proposed system is to secure the data in smart healthcare systems using blockchain in 5G networks to prevent the data from forgery.


Author(s):  
Weston Mwashita ◽  
Marcel Ohanga Odhiambo

This research work presents a power control mechanism developed for ProSe-enabled sensors so that the sensors can be smoothly integrated into the fifth generation (5G) of mobile networks. It is strongly anticipated that 5G networks will provide an enabling environment for the 21st century innovations like the internet of things (IoT). Sensors are pivotal in IoT. The proposed power control mechanism involves an open loop power control (OLPC) mechanism that a ProSe-enabled sensor has to use to establish communication with a base station (BS) and a closed loop power control (CLPC) the BS then has use to establish transmit power levels for devices to be involved in a device to device (D2D) communication depending on the prevailing channel conditions. The results obtained demonstrate that the developed scheme does not adversely affect the quality of service (QoS) of a 5G mobile network.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 671
Author(s):  
Shin-Hung Pan ◽  
Shu-Ching Wang

The continuous development of fifth-generation (5G) networks is the main driving force for the growth of Internet of Things (IoT) applications. It is expected that the 5G network will greatly expand the applications of the IoT, thereby promoting the operation of cellular networks, the security and network challenges of the IoT, and pushing the future of the Internet to the edge. Because the IoT can make anything in anyplace be connected together at any time, it can provide ubiquitous services. With the establishment and use of 5G wireless networks, the cellular IoT (CIoT) will be developed and applied. In order to provide more reliable CIoT applications, a reliable network topology is very important. Reaching a consensus is one of the most important issues in providing a highly reliable CIoT design. Therefore, it is necessary to reach a consensus so that even if some components in the system is abnormal, the application in the system can still execute correctly in CIoT. In this study, a protocol of consensus is discussed in CIoT with dual abnormality mode that combines dormant abnormality and malicious abnormality. The protocol proposed in this research not only allows all normal components in CIoT to reach a consensus with the minimum times of data exchange, but also allows the maximum number of dormant and malicious abnormal components in CIoT. In the meantime, the protocol can make all normal components in CIoT satisfy the constraints of reaching consensus: Termination, Agreement, and Integrity.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
AlMuthanna Turki Nassar ◽  
Ahmed Iyanda Sulyman ◽  
Abdulhameed Alsanie

This paper presents radio frequency (RF) capacity estimation for millimeter wave (mm-wave) based fifth-generation (5G) cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS). This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS) roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average) compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.


Sign in / Sign up

Export Citation Format

Share Document