CaO Nanoparticles

2022 ◽  
pp. 247-268
Author(s):  
Nnabuk Okon Eddy ◽  
Rajni Garg

Adsorption is widely acknowledged as one of the best options that are available for the removal of contaminants from water. Contamination of water does not only create water scarcity, but it has the capacity to generate and transfer several environmental problems including threat to public health. This chapter reviewed calcium oxide nanoparticle (CaONP) as a noble metal oxide for the removal of contaminants from water. The review is concentrated in the general overview of water contamination, metal oxide nanoparticles, general application of CaONP, synthetic methods, characterization method, and applications. The chapter observed that little is done on the use of CaONP for the removal of contaminants from water except for dyes, some heavy metal ions, and few organic/inorganic compounds. It is also observed that CaONP can be applied as adsorbent and in photocatalytic degradation of dye. Suggestions are made on the possibility of utilizing local raw materials that are easily accessible, cheap, and environmental sources of raw materials for the synthesis of CaONP.

2018 ◽  
Vol 6 (8) ◽  
pp. 136-145
Author(s):  
Ayodeji Precious Ayanwale ◽  
Alejandro Donohué Cornejo ◽  
Juan Carlos Cuevas González ◽  
León Francisco Espinosa Cristóbal ◽  
Simón Yobanny Reyes López

There has been different synthetic route used for the synthesis of zirconia mixed metal oxide nanoparticles. The different synthetic methods coupled with other factors like concentration, PH, type of precursor used etc help to synthesize zirconia mixed metal oxide nanoparticles having different physicochemical properties. This paper discusses the different synthetic routes of sol-gel, hydrothermal and coprecipitation method for the formation of zirconia in combination with other metal oxide to form zirconia mixed metal oxide nanoparticles, the physicochemical properties of the synthesized zirconia mixed metal oxide nanoparticle, their characterization and application.


2010 ◽  
Vol 108 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Kevin Tvrdy ◽  
Pavel A. Frantsuzov ◽  
Prashant V. Kamat

Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.


2011 ◽  
Vol 694 ◽  
pp. 146-149
Author(s):  
Ji Fen Wang ◽  
Hua Qing Xie ◽  
Zhong Xin ◽  
Yang Li ◽  
Jing Li

We prepared a series of paraffin wax (PW) based phase change composite containing ZnO, Al2O3 and Fe2O3 nanoparticles, respectively. DSC results showed that there is a decrease trend in phase change latent heat capacity (Ls) with an increase of metal oxide nanoparticle loadings. ZnO/PW has higher Ls than those of Fe2O3/PW and Al2O3/PW with same metal oxide nanoparticle loadings. Transient short-hot-wire (SHW) method was used to measure thermal conductivity of these composites. The results showed that nanoparticle addition leads to substantial enhancement in the thermal conductivity of the composites. The highest thermal conductivity of the measured composites is about 0.27 W/(m•K) of Fe2O3/PW with 3.0 wt% nanoparticles and Al2O3/PW with 5.0 wt% nanoparticles at 15 oC, which higher than that of PW by about 30%. The lowest thermal conductivity of composites is that of Al2O3/PW and ZnO/PW with 1.0 wt% nanoparticles at 60 oC, which higher than that of PW by about 7%.


2021 ◽  
Author(s):  
Thomas Schneider ◽  
Anna Mittag ◽  
Martin Westermann ◽  
Michael Glei

The properties of orally ingested nanoparticles can be influenced by the conditions prevailing in the digestive tract. The influence of the pH value on the fate of metal oxide nanoparticles was demonstrated using a simplified digestion approach.


2021 ◽  
Vol 22 (17) ◽  
pp. 9596
Author(s):  
Harshada Kotrange ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Robert Gruszecki ◽  
Prince Chawla ◽  
...  

In addition to the benefits, increasing the constant need for antibiotics has resulted in the development of antibiotic bacterial resistance over time. Antibiotic tolerance mainly evolves in these bacteria through efflux pumps and biofilms. Leading to its modern and profitable uses, emerging nanotechnology is a significant field of research that is considered as the most important scientific breakthrough in recent years. Metal nanoparticles as nanocarriers are currently attracting a lot of interest from scientists, because of their wide range of applications and higher compatibility with bioactive components. As a consequence of their ability to inhibit the growth of bacteria, nanoparticles have been shown to have significant antibacterial, antifungal, antiviral, and antiparasitic efficacy in the battle against antibiotic resistance in microorganisms. As a result, this study covers bacterial tolerance to antibiotics, the antibacterial properties of various metal nanoparticles, their mechanisms, and the use of various metal and metal oxide nanoparticles as novel antibiotic carriers for direct antibiotic delivery.


2019 ◽  
Vol 21 (14) ◽  
pp. 3769-3781 ◽  
Author(s):  
Mary Kate Mitchell Lane ◽  
Julie B. Zimmerman

Supercritical fluid nanoparticle synthesis (SCF nano synthesis) can robustly and readily control size and shape of metal oxide nanoparticles, while offering a potentially greener synthetic route through the employment of green solvents.


2021 ◽  
Vol 8 (10) ◽  
pp. 146
Author(s):  
Abdulrahman A. Balhaddad ◽  
Isadora M. Garcia ◽  
Lamia Mokeem ◽  
Rashed Alsahafi ◽  
Fabrício Mezzomo Collares ◽  
...  

Advances in nanotechnology have unlocked exclusive and relevant capabilities that are being applied to develop new dental restorative materials. Metal oxide nanoparticles and nanotubes perform functions relevant to a range of dental purposes beyond the traditional role of filler reinforcement—they can release ions from their inorganic compounds damaging oral pathogens, deliver calcium phosphate compounds, provide contrast during imaging, protect dental tissues during a bacterial acid attack, and improve the mineral content of the bonding interface. These capabilities make metal oxide nanoparticles and nanotubes useful for dental adhesives and composites, as these materials are the most used restorative materials in daily dental practice for tooth restorations. Secondary caries and material fractures have been recognized as the most common routes for the failure of composite restorations and bonding interface in the clinical setting. This review covers the significant capabilities of metal oxide nanoparticles and nanotubes incorporated into dental adhesives and composites, focusing on the novel benefits of antibacterial properties and how they relate to their translational applications in restorative dentistry. We pay close attention to how the development of contemporary antibacterial dental materials requires extensive interdisciplinary collaboration to accomplish particular and complex biological tasks to tackle secondary caries. We complement our discussion of dental adhesives and composites containing metal oxide nanoparticles and nanotubes with considerations needed for clinical application. We anticipate that readers will gain a complete picture of the expansive possibilities of using metal oxide nanoparticles and nanotubes to develop new dental materials and inspire further interdisciplinary development in this area.


Sign in / Sign up

Export Citation Format

Share Document