EEG Based Detection of Alcoholics

2012 ◽  
Vol 1 (1) ◽  
pp. 59-76 ◽  
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.

2019 ◽  
pp. 141-160
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


Author(s):  
Kevin A. Caulfield ◽  
Mark S. George

Before 1990, neurologists and psychiatrists could not readily image or examine (except at death) their main organ of study, the brain, causing clinical neuroscience to lag behind the rest of medicine. In the past 30 years, new brain-imaging techniques (positron emission tomography (PET) and magnetic resonance imaging (MRI)) have allowed neuropsychiatrists to play catch-up, equipped with a more detailed and complex understanding of functional neuroanatomy. Researchers could then theorize about how circuit-based dysfunction might cause psychiatric diseases. In addition to the tools of electroconvulsive therapy (ECT) and brain surgery, we now have a rapidly expanding therapeutic toolkit of non-invasive brain-stimulation devices. This chapter presents a representative landmark imaging paper from the functional imaging revolution, and four device-based papers (two on transcranial magnetic stimulation (TMS), and one each on transcranial alternating current stimulation (tACS) and vagus nerve stimulation (VNS)). These papers broadly cover the path that led to the exciting current and future possibilities for therapeutic non-invasive brain stimulation.


2005 ◽  
Vol 48 (spe2) ◽  
pp. 179-183 ◽  
Author(s):  
Francisco Lomeña ◽  
Marina Soler

Positron emission tomography (PET) is an imaging modality that gives information on tissue metabolism and functionalism, different from other imaging techniques like computed tomography (CT) and magnetic resonance imaging (MRI), which provide anatomical or structural information. PET has reached its development in biomedical research because of its capacity to use analogous compounds of many endogenous substance as tracers, and to measure, in vivo and in a non-invasive way, their consumption by the different organs and tissues of the mammalian body. Fluordeoxyglucose-F18 (FDG) PET has been proven to be a tracer adequate for clinical use in oncology and in many neurological diseases, with an excellent cost-efficiency ratio. The current PET-CT scanners can come to be the best tools for exploring patients who suffer from cancer.


Author(s):  
Siyamol Chirakkarottu ◽  
Sheena Mathew

Background: Medical imaging encloses different imaging techniques and processes to image the human body for medical diagnostic and treatment purposes. Hence it plays an important role to improve public health. The technological development in biomedical imaging specifically in X-ray, Computed Tomography (CT), nuclear ultrasound including Positron Emission Tomography (PET), optical and Magnetic Resonance Imaging (MRI) can provide valuable information unique to a person. Objective: In health care applications, the images are needed to be exchanged mostly over wireless medium. The diagnostic images with confidential information of a patient need to be protected from unauthorized access during transmission. In this paper, a novel encryption method is proposed to improve the security and integrity of medical images. Methods: Chaotic map along with DNA cryptography is used for encryption. The proposed method describes a two phase encryption of medical images. Results: Performance of the proposed method is also tested by various analysis metrics. Robustness of the method against different noises and attacks is analyzed. Conclusion: The results show that the method is efficient and well suitable to medical images.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2348
Author(s):  
Leon Riehakainen ◽  
Chiara Cavallini ◽  
Paolo Armanetti ◽  
Daniele Panetta ◽  
Davide Caramella ◽  
...  

Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2874
Author(s):  
Hengfeng Yuan ◽  
Wen Jiang ◽  
Yuanxin Chen ◽  
Betty Kim

Ischemic injuries and local hypoxia can result in osteocytes dysfunction and play a key role in the pathogenesis of avascular osteonecrosis. Conventional imaging techniques including magnetic resonance imaging (MRI) and computed tomography (CT) can reveal structural and functional changes within bony anatomy; however, characterization of osteocyte behavioral dynamics in the setting of osteonecrosis at the single cell resolution is limited. Here, we demonstrate an optical approach to study real-time osteocyte functions in vivo. Using nicotinamide adenine dinucleotide (NADH) as a biomarker for metabolic dynamics in osteocytes, we showed that NADH level within osteocytes transiently increase significantly after local ischemia through non-invasive photo-induced thrombosis of afferent arterioles followed by a steady decline. Our study presents a non-invasive optical approach to study osteocyte behavior through the modulation of local environmental conditions. Thus it provides a powerful toolkit to study cellular processes involved in bone pathologies in vivo.


2019 ◽  
Vol 64 (1) ◽  
pp. 24-28 ◽  
Author(s):  
A. V. Kozlov ◽  
O. A. Gusyakova ◽  
A. A. Ereshchenko ◽  
A. V. Khaliulin

The review presents the pathobiochemical and molecular mechanisms of sputum formation in patients with cystic fibrosis associated with the pathophysiological features of the disease. Statistical data on the prevalence of this pathology in the world and in the Russian Federation are presented. The mechanisms of sputum formation and disorders of the mucociliary apparatus, leading to the accumulation of viscous bronchopulmonary secret in cystic fibrosis, are considered. The principles of the relationship between the rheological properties of sputum and the formation of inflammation in the lungs with the addition of a concomitant specific microflora in the bronchopulmonary system in patients with cystic fibrosis are presented. Describes the opportunities for biochemical studies of sputum of patients with this pathology: determining the activity of enzymes (myeloperoxidase), the content of proteinase inhibitors (α2-macroglobulin and α1-antitrypsin) and proinflammatory cytokines (IL-8 and TNFa), concentrations of iron and ferriferous proteins (lactoferrin and ferritin), which makes biochemical studies of sputum available, non-invasive, quick and cost-effective method of diagnosis, which can be widely used as an auxiliary laboratory method and makes it possible to use these metabolites as diagnostic markers to assess the severity of inflammation and infection of the lower respiratory tract and predict the development of respiratory complications in patients with cystic fibrosis.


2019 ◽  
Author(s):  
Gilbert S Tang

Non-invasive imaging techniques such as ultrasonography, x-ray, computerized tomography (CT) and magnetic resonance imaging (MRI) provide details about airway anatomy that complement the physical examination. They are of particular value in patients with traumatic injury, malignancy, abscess, foreign body or mass in the airway that displace, distort, disrupt, encroach or compress airway structures in ways that may not be readily apparent otherwise. Many anesthesiologists do not receive formal training in interpreting medical imaging, and a thorough discussion of this subject is beyond the scope of this review. Interpreting the subtleties of normal and abnormal anatomy require years of experience and best left to expert radiologists. The goal here is to introduce the imaging techniques available and examples of clinical applications in airway evaluation of interest to the anesthesiologist. This review contains 12 figures, 2 tables, and 37 references. Keywords: piezoelectric effect, photoelectric interaction, Faraday’s law, pneumothorax, cervical spine injury, LeFort fracture, foreign body, airway infection, mediastinal mass


Author(s):  
Shabana Urooj ◽  
Satya P. Singh

The aim of this chapter is to highlight the biomedical applications of wavelet transform based soft computational techniques i.e. wavenet and corresponding research efforts in imaging techniques. A brief introduction of wavelet transform, its properties that are vital for biomedical applications touched by various researchers and basics of neural networks has been discussed. The concept of wavelon and wavenet is also discussed in detail. Recent survey of wavelet based neural networks in medical imaging is another facet of this script, which includes biomedical image denoising, image enhancement and functional neuro-imaging, including positron emission tomography and functional MRI.


2021 ◽  
pp. 973-976
Author(s):  
Ivan Zammit-Maempel

Various imaging techniques are used in the staging and follow-up of head and neck cancer and evaluating patients presenting with a neck mass. The workhorses in imaging the neck are ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) with positron emission tomography CT (PET-CT) increasingly being requested. Plain radiographs, contrast studies, video fluoroscopy, angiography, and cone beam CT have limited but important roles. This chapter discusses the role of some of these modalities.


Sign in / Sign up

Export Citation Format

Share Document