A Novel Secure and Robust encryption scheme for medical images

Author(s):  
Siyamol Chirakkarottu ◽  
Sheena Mathew

Background: Medical imaging encloses different imaging techniques and processes to image the human body for medical diagnostic and treatment purposes. Hence it plays an important role to improve public health. The technological development in biomedical imaging specifically in X-ray, Computed Tomography (CT), nuclear ultrasound including Positron Emission Tomography (PET), optical and Magnetic Resonance Imaging (MRI) can provide valuable information unique to a person. Objective: In health care applications, the images are needed to be exchanged mostly over wireless medium. The diagnostic images with confidential information of a patient need to be protected from unauthorized access during transmission. In this paper, a novel encryption method is proposed to improve the security and integrity of medical images. Methods: Chaotic map along with DNA cryptography is used for encryption. The proposed method describes a two phase encryption of medical images. Results: Performance of the proposed method is also tested by various analysis metrics. Robustness of the method against different noises and attacks is analyzed. Conclusion: The results show that the method is efficient and well suitable to medical images.

Author(s):  
A. Busato ◽  
P. Fumene Feruglio ◽  
P.P. Parnigotto ◽  
P. Marzola ◽  
A. Sbarbati

In vivo imaging techniques can be integrated with classical histochemistry to create an actual histochemistry of water. In particular, Magnetic Resonance Imaging (MRI), an imaging technique primarily used as diagnostic tool in clinical/preclinical research, has excellent anatomical resolution, unlimited penetration depth and intrinsic soft tissue contrast. Thanks to the technological development, MRI is not only capable to provide morphological information but also and more interestingly functional, biophysical and molecular. In this paper we describe the main features of several advanced imaging techniques, such as MRI microscopy, Magnetic Resonance Spectroscopy, functional MRI, Diffusion Tensor Imaging and MRI with contrast agent as a useful support to classical histochemistry.


2019 ◽  
pp. 141-160
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


2021 ◽  
pp. 973-976
Author(s):  
Ivan Zammit-Maempel

Various imaging techniques are used in the staging and follow-up of head and neck cancer and evaluating patients presenting with a neck mass. The workhorses in imaging the neck are ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) with positron emission tomography CT (PET-CT) increasingly being requested. Plain radiographs, contrast studies, video fluoroscopy, angiography, and cone beam CT have limited but important roles. This chapter discusses the role of some of these modalities.


2012 ◽  
Vol 1 (1) ◽  
pp. 59-76 ◽  
Author(s):  
T. K. Padma Shri ◽  
N. Sriraam

The short term and long term effects of alcohol on various organs of the body, especially on the human brain is well established by numerous studies. Invasive methods such as Transcranial Magnetic Stimulation (TMS) and non invasive imaging techniques such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and functional MRI activated electro-encephalogram (EEG) have been used to study the changes in EEG activity due to alcoholism. Even with the advent of neuro imaging techniques, EEG happens to be an important tool for brain study providing a non- invasive and cost effective method to detect the effects of alcohol on the human brain. This paper discusses the harmful effects of alcohol on different organs of the body. The advances in the development of EEG signal processing algorithms over the past decade for alcoholic detection are reviewed and their limitations are reported. Further the use of EEG for mass screening of alcoholics and biometric application is discussed in detail.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1058
Author(s):  
Andrea Cimini ◽  
Maria Ricci ◽  
Paola Elda Gigliotti ◽  
Luca Pugliese ◽  
Agostino Chiaravalloti ◽  
...  

Schistosomiasis is one of the most important parasitic diseases and it is endemic in tropical and subtropical areas. Clinical and laboratory data are fundamental for the diagnosis of schistosomiasis, but diagnostic imaging techniques such as x-rays, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) may be helpful in the evaluation of disease severity and complications. In this context, the aim of this review is to explore the actual role of diagnostic imaging in the diagnosis of schistosomiasis, underlining advantages and drawbacks providing information about the utilization of diagnostic imaging techniques in this context. Furthermore, we aim to provide a useful guide regarding imaging features of schistosomiasis for radiology and nuclear medicine physicians of non-endemic countries: in fact, in the last years non-endemic countries have experienced important flows of migrants from endemic areas, therefore it is not uncommon to face cases of this disease in daily practice.


Author(s):  
Kevin A. Caulfield ◽  
Mark S. George

Before 1990, neurologists and psychiatrists could not readily image or examine (except at death) their main organ of study, the brain, causing clinical neuroscience to lag behind the rest of medicine. In the past 30 years, new brain-imaging techniques (positron emission tomography (PET) and magnetic resonance imaging (MRI)) have allowed neuropsychiatrists to play catch-up, equipped with a more detailed and complex understanding of functional neuroanatomy. Researchers could then theorize about how circuit-based dysfunction might cause psychiatric diseases. In addition to the tools of electroconvulsive therapy (ECT) and brain surgery, we now have a rapidly expanding therapeutic toolkit of non-invasive brain-stimulation devices. This chapter presents a representative landmark imaging paper from the functional imaging revolution, and four device-based papers (two on transcranial magnetic stimulation (TMS), and one each on transcranial alternating current stimulation (tACS) and vagus nerve stimulation (VNS)). These papers broadly cover the path that led to the exciting current and future possibilities for therapeutic non-invasive brain stimulation.


2019 ◽  
Vol 25 (2) ◽  
pp. 57-68 ◽  
Author(s):  
Daryoush Shahbazi-Gahrouei ◽  
Pegah Moradi Khaniabadi ◽  
Saghar Shahbazi-Gahrouei ◽  
Amir Khorasani ◽  
Farshid Mahmoudi

Abstract Molecular imaging techniques using nanoparticles have significant potential to be widely used for the detection of various types of cancers. Nowadays, there has been an increased focus on developing novel nanoprobes as molecular imaging contrast enhancement agents in nanobiomedicine. The purpose of this review article is to summarize the use of a variety of nanoprobes and their current achievements in accurate cancer imaging and effective treatment. Nanoprobes are rapidly becoming potential tools for cancer diagnosis by using novel molecular imaging modalities such as Ultrasound (US) imaging, Computerized Tomography (CT), Single Photon Emission Tomography (SPECT) and Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and Optical Imaging. These imaging modalities may facilitate earlier and more accurate diagnosis and staging the most of cancers.


Author(s):  
Allison C. Nugent ◽  
Maura L. Furey

Neuroscience research has clearly demonstrated neurological correlates of psychological disorders. We believe that neuroscience, particularly neuroimaging, has great potential to increase our understanding of these disorders, leading to more effective treatments, prevention, and perhaps even cure. Nevertheless, the popular media is replete with misinformation and exaggerated claims. The present chapter is intended to give the reader the necessary knowledge to critically evaluate neuroimaging studies of psychological disorders. We provide an overview of all the major neuroimaging techniques, example studies relevant to psychological disorders (with a particular emphasis on depression), particular pitfalls and caveats associated with each technique, and the promise of each technique. We first cover the nuclear imaging techniques, single photon emission computed tomography (SPECT) and positron emission tomography (PET). We then explore several magnetic resonance imaging (MRI) techniques, both structural and functional. Finally, we give an overview of the electrophysiological techniques, electroencephalography (EEG) and magnetoencephalography (MEG). Each of these techniques has particular strengths, and particular weaknesses. At this point, none of these tools are diagnostic, but each one provides a unique window into psychological disorders. When applied in a methodologically rigorous and statistically rigorous manner, neuroimaging has great promise for achieving greater understanding of psychological disorders, and relieving the great burdens they cause.


2012 ◽  
Vol 113 (2) ◽  
pp. 328-339 ◽  
Author(s):  
Susan R. Hopkins ◽  
Mark O. Wielpütz ◽  
Hans-Ulrich Kauczor

From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues ( J Clin Invest 40: 1–12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 390
Author(s):  
Donovan Tay ◽  
Jeeban P. Das ◽  
Randy Yeh

With increasing use of minimally invasive parathyroidectomy (PTx) over traditional bilateral neck exploration in patients with primary hyperparathyroidism (PHPT), accurate preoperative localization has become more important to enable a successful surgical outcome. Traditional imaging techniques such as ultrasound (US) and sestamibi scintigraphy (MIBI) and newer techniques such as parathyroid four-dimension computed tomography (4D-CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) are available for the clinician to detect the diseased gland(s) in the preoperative workup. Invasive parathyroid venous sampling may be useful in certain circumstances such as persistent or recurrent PHPT. We review the diagnostic performance of these imaging modalities in preoperative localization and discuss the advantages and weaknesses of these techniques. US and MIBI are established techniques commonly utilized as first-line modalities. 4D-CT has excellent diagnostic performance and is increasingly performed in first-line setting and as an adjunct to US and MIBI. PET and MRI are emerging adjunct modalities when localization has been equivocal or failed. Since no evidence-based guidelines are yet available for the optimal imaging strategy, clinicians should be familiar with the range and advancement of these techniques. Choice of imaging modality should be individualized to the patient with consideration for efficacy, expertise, and availability of such techniques in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document