scholarly journals Hidden Service Circuit Reconstruction Attacks Based on Middle Node Traffic Analysis

2021 ◽  
Vol 13 (6) ◽  
pp. 0-0

Traffic analysis is widely considered as an attack posing a threat to anonymity of the communication and may reveal the real identity of the users. In this paper, a novel anonymous circuit reconstruction attack method that correlates the circuit traffic is proposed. This method then reconstructs a complete communication tunnel using the location of middle nodes found between the hidden and client services. The attack process includes independent determination of the location of the malicious nodes. A traffic correlation framework of AutoEncoder + CNN + BiLSTM is established, based on the Generative Adversarial Networks (GAN) model. BiLSTM applies the packet size and packet interval features of bidirectional traffic and combines the reconstruction loss function with the discrimination loss function to achieve correlated traffic evaluation. After balancing the reconstruction loss and discrimination loss scores, the simulation results confirm that the identification performance of the proposed system is higher than the advanced models.

2018 ◽  
Vol 10 (7) ◽  
pp. 1123 ◽  
Author(s):  
Yuhang Zhang ◽  
Hao Sun ◽  
Jiawei Zuo ◽  
Hongqi Wang ◽  
Guangluan Xu ◽  
...  

Aircraft type recognition plays an important role in remote sensing image interpretation. Traditional methods suffer from bad generalization performance, while deep learning methods require large amounts of data with type labels, which are quite expensive and time-consuming to obtain. To overcome the aforementioned problems, in this paper, we propose an aircraft type recognition framework based on conditional generative adversarial networks (GANs). First, we design a new method to precisely detect aircrafts’ keypoints, which are used to generate aircraft masks and locate the positions of the aircrafts. Second, a conditional GAN with a region of interest (ROI)-weighted loss function is trained on unlabeled aircraft images and their corresponding masks. Third, an ROI feature extraction method is carefully designed to extract multi-scale features from the GAN in the regions of aircrafts. After that, a linear support vector machine (SVM) classifier is adopted to classify each sample using their features. Benefiting from the GAN, we can learn features which are strong enough to represent aircrafts based on a large unlabeled dataset. Additionally, the ROI-weighted loss function and the ROI feature extraction method make the features more related to the aircrafts rather than the background, which improves the quality of features and increases the recognition accuracy significantly. Thorough experiments were conducted on a challenging dataset, and the results prove the effectiveness of the proposed aircraft type recognition framework.


2020 ◽  
Author(s):  
Fajr Alarsan ◽  
Mamoon Younes

Abstract Generative Adversarial Networks (GANs) are most popular generative frameworks that have achieved compelling performance. They follow an adversarial approach where two deep models generator and discriminator compete with each other In this paper, we propose a Generative Adversarial Network with best hyper-parameters selection to generate fake images for digits number 1 to 9 with generator and train discriminator to decide whereas the generated images are fake or true. Using Genetic Algorithm technique to adapt GAN hyper-parameters, the final method is named GANGA:Generative Adversarial Network with Genetic Algorithm. Anaconda environment with tensorflow library facilitates was used, python as programming language also used with needed libraries. The implementation was done using MNIST dataset to validate our work. The proposed method is to let Genetic algorithm to choose best values of hyper-parameters depending on minimizing a cost function such as a loss function or maximizing accuracy function. GA was used to select values of Learning rate, Batch normalization, Number of neurons and a parameter of Dropout layer.


2020 ◽  
Vol 10 (5) ◽  
pp. 1729 ◽  
Author(s):  
Yuning Jiang ◽  
Jinhua Li

Objective: Super-resolution reconstruction is an increasingly important area in computer vision. To alleviate the problems that super-resolution reconstruction models based on generative adversarial networks are difficult to train and contain artifacts in reconstruction results, we propose a novel and improved algorithm. Methods: This paper presented TSRGAN (Super-Resolution Generative Adversarial Networks Combining Texture Loss) model which was also based on generative adversarial networks. We redefined the generator network and discriminator network. Firstly, on the network structure, residual dense blocks without excess batch normalization layers were used to form generator network. Visual Geometry Group (VGG)19 network was adopted as the basic framework of discriminator network. Secondly, in the loss function, the weighting of the four loss functions of texture loss, perceptual loss, adversarial loss and content loss was used as the objective function of generator. Texture loss was proposed to encourage local information matching. Perceptual loss was enhanced by employing the features before activation layer to calculate. Adversarial loss was optimized based on WGAN-GP (Wasserstein GAN with Gradient Penalty) theory. Content loss was used to ensure the accuracy of low-frequency information. During the optimization process, the target image information was reconstructed from different angles of high and low frequencies. Results: The experimental results showed that our method made the average Peak Signal to Noise Ratio of reconstructed images reach 27.99 dB and the average Structural Similarity Index reach 0.778 without losing too much speed, which was superior to other comparison algorithms in objective evaluation index. What is more, TSRGAN significantly improved subjective visual evaluations such as brightness information and texture details. We found that it could generate images with more realistic textures and more accurate brightness, which were more in line with human visual evaluation. Conclusions: Our improvements to the network structure could reduce the model’s calculation amount and stabilize the training direction. In addition, the loss function we present for generator could provide stronger supervision for restoring realistic textures and achieving brightness consistency. Experimental results prove the effectiveness and superiority of TSRGAN algorithm.


2021 ◽  
pp. 1-38
Author(s):  
Himesh Bhatia ◽  
William Paul ◽  
Fady Alajaji ◽  
Bahman Gharesifard ◽  
Philippe Burlina

Abstract We investigate the use of parameterized families of information-theoretic measures to generalize the loss functions of generative adversarial networks (GANs) with the objective of improving performance. A new generator loss function, least kth-order GAN (LkGAN), is introduced, generalizing the least squares GANs (LSGANs) by using a kth-order absolute error distortion measure with k≥1 (which recovers the LSGAN loss function when k=2). It is shown that minimizing this generalized loss function under an (unconstrained) optimal discriminator is equivalent to minimizing the kth-order Pearson-Vajda divergence. Another novel GAN generator loss function is next proposed in terms of Rényi cross-entropy functionals with order α>0, α≠1. It is demonstrated that this Rényi-centric generalized loss function, which provably reduces to the original GAN loss function as α→1, preserves the equilibrium point satisfied by the original GAN based on the Jensen-Rényi divergence, a natural extension of the Jensen-Shannon divergence. Experimental results indicate that the proposed loss functions, applied to the MNIST and CelebA data sets, under both DCGAN and StyleGAN architectures, confer performance benefits by virtue of the extra degrees of freedom provided by the parameters k and α, respectively. More specifically, experiments show improvements with regard to the quality of the generated images as measured by the Fréchet inception distance score and training stability. While it was applied to GANs in this study, the proposed approach is generic and can be used in other applications of information theory to deep learning, for example, the issues of fairness or privacy in artificial intelligence.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3145 ◽  
Author(s):  
Yuantao Chen ◽  
Jiajun Tao ◽  
Jin Wang ◽  
Xi Chen ◽  
Jingbo Xie ◽  
...  

To address the problem of unstable training and poor accuracy in image classification algorithms based on generative adversarial networks (GAN), a novel sensor network structure for classification processing using auxiliary classifier generative adversarial networks (ACGAN) is proposed in this paper. Firstly, the real/fake discrimination of sensor samples in the network has been canceled at the output layer of the discriminative network and only the posterior probability estimation of the sample tag is outputted. Secondly, by regarding the real sensor samples as supervised data and the generative sensor samples as labeled fake data, we have reconstructed the loss function of the generator and discriminator by using the real/fake attributes of sensor samples and the cross-entropy loss function of the label. Thirdly, the pooling and caching method has been introduced into the discriminator to enable more effective extraction of the classification features. Finally, feature matching has been added to the discriminative network to ensure the diversity of the generative sensor samples. Experimental results have shown that the proposed algorithm (CP-ACGAN) achieves better classification accuracy on the MNIST dataset, CIFAR10 dataset and CIFAR100 dataset than other solutions. Moreover, when compared with the ACGAN and CNN classification algorithms, which have the same deep network structure as CP-ACGAN, the proposed method continues to achieve better classification effects and stability than other main existing sensor solutions.


2021 ◽  
Author(s):  
Zhang Jian ◽  
Wanjuan Song

Abstract Image dehazing has always been a challenging topic in image processing. The development of deep learning methods, especially the Generative Adversarial Networks(GAN), provides a new way for image dehazing. In recent years, many deep learning methods based on GAN have been applied to image dehazing. However, GAN has two problems in image dehazing. Firstly, For haze image, haze not only reduces the quality of the image, but also blurs the details of the image. For Gan network, it is difficult for the generator to restore the details of the whole image while removing the haze. Secondly, GAN model is defined as a minimax problem, which weakens the loss function. It is difficult to distinguish whether GAN is making progress in the training process. Therefore, we propose a Guided Generative Adversarial Dehazing Network(GGADN). Different from other generation adversarial networks, GGADN adds a guided module on the generator. The guided module verifies the network of each layer of the generator. At the same time, the details of the map generated by each layer are strengthened. Network training is based on the pre-trained VGG feature model and L1-regularized gradient prior which is developed by new loss function parameters. From the dehazing results of synthetic images and real images, proposed method is better than the state-of-the-art dehazing methods.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 275
Author(s):  
Ziyun Jiao ◽  
Fuji Ren

Generative adversarial networks (GANs) were first proposed in 2014, and have been widely used in computer vision, such as for image generation and other tasks. However, the GANs used for text generation have made slow progress. One of the reasons is that the discriminator’s guidance for the generator is too weak, which means that the generator can only get a “true or false” probability in return. Compared with the current loss function, the Wasserstein distance can provide more information to the generator, but RelGAN does not work well with Wasserstein distance in experiments. In this paper, we propose an improved neural network based on RelGAN and Wasserstein loss named WRGAN. Differently from RelGAN, we modified the discriminator network structure with 1D convolution of multiple different kernel sizes. Correspondingly, we also changed the loss function of the network with a gradient penalty Wasserstein loss. Our experiments on multiple public datasets show that WRGAN outperforms most of the existing state-of-the-art methods, and the Bilingual Evaluation Understudy(BLEU) scores are improved with our novel method.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 497
Author(s):  
Nannan Tian ◽  
Yuan Liu ◽  
Bo Wu ◽  
Xiaofeng Li

Logo design is a complex process for designers and color plays a very important role in logo design. The automatic colorization of logo sketch is of great value and full of challenges. In this paper, we propose a new logo design method based on Conditional Generative Adversarial Networks, which can output multiple colorful logos only by providing one logo sketch. We improve the traditional U-Net structure, adding channel attention and spatial attention in the process of skip-connection. In addition, the generator consists of parallel attention-based U-Net blocks, which can output multiple logo images. During the model optimization process, a style loss function is proposed to improve the color diversity of the logos. We evaluate our method on the self-built edges2logos dataset and the public edges2shoes dataset. Experimental results show that our method can generate more colorful and realistic logo images based on simple sketches. Compared to the classic networks, the logos generated by our network are also superior in visual effects.


2022 ◽  
pp. 1-29
Author(s):  
Yancheng Lv ◽  
Lin Lin ◽  
Jie Liu ◽  
Hao Guo ◽  
Changsheng Tong

Abstract Most of the research on machine learning classification methods is based on balanced data; the research on imbalanced data classification needs improvement. Generative adversarial networks (GANs) are able to learn high-dimensional complex data distribution without relying on a prior hypothesis, which has become a hot technology in artificial intelligence. In this letter, we propose a new structure, classroom-like generative adversarial networks (CLGANs), to construct a model with multiple generators. Taking inspiration from the fact that teachers arrange teaching activities according to students' learning situation, we propose a weight allocation function to adaptively adjust the influence weight of generator loss function on discriminator loss function. All the generators work together to improve the degree of discriminator and training sample space, so that a discriminator with excellent performance is trained and applied to the tasks of imbalanced data classification. Experimental results on the Case Western Reserve University data set and 2.4 GHz Indoor Channel Measurements data set show that the data classification ability of the discriminator trained by CLGANs with multiple generators is superior to that of other imbalanced data classification models, and the optimal discriminator can be obtained by selecting the right matching scheme of the generator models.


Sign in / Sign up

Export Citation Format

Share Document