Detection and Segmentation of Medical Images Using Generic Algorithms

Author(s):  
Hardev Mukeshbhai Khandhar ◽  
Chintan M. Bhatt ◽  
Simon Fong

Image processing plays an indispensable and significant role in the development of various fields like medical imaging, astronomy, GIS, disaster management, agriculture monitoring, and so on. Medical images which are recorded in digital forms are processed by high-end computers to extract whatever information we desire. In the fast-developing modern world of medical imaging diagnosis and prognosis, where manual photo interpretation is time-consuming, automatic object detection from devices like CT-Scans and MRIs has limited potential to generate the required results. This article addresses the process of identifying Region of Interests in cancer based medical images based on combination of Otsu’s algorithm and Canny edge detection methods. The primary objective of this paper is to derive meaningful and potential information from medical image in different scenarios by applying the image segementation in combination with genetic algorithms in a robust manner to detect region of interest.

2021 ◽  
Vol 8 (3) ◽  
pp. 1-8
Author(s):  
Cuong Phan Viet ◽  
Thao Ho Thi ◽  
Anh Le Tuan ◽  
Ha Nguyen Hong ◽  
Thanh Ha Quang

Handling and improving the quality of medical images with the help of computer software is one of the important stages in the diagnosis and treatment. In this article, we focus on describing the new morphological algorithms by ITK (Insight Segmentation and Registration Toolkit). These morphological operators eliminate noise, detect good edges, and overcome the drawback of traditional edge detection methods.


2019 ◽  
Vol 8 (4) ◽  
pp. 462 ◽  
Author(s):  
Muhammad Owais ◽  
Muhammad Arsalan ◽  
Jiho Choi ◽  
Kang Ryoung Park

Medical-image-based diagnosis is a tedious task‚ and small lesions in various medical images can be overlooked by medical experts due to the limited attention span of the human visual system, which can adversely affect medical treatment. However, this problem can be resolved by exploring similar cases in the previous medical database through an efficient content-based medical image retrieval (CBMIR) system. In the past few years, heterogeneous medical imaging databases have been growing rapidly with the advent of different types of medical imaging modalities. Recently, a medical doctor usually refers to various types of imaging modalities all together such as computed tomography (CT), magnetic resonance imaging (MRI), X-ray, and ultrasound, etc of various organs in order for the diagnosis and treatment of specific disease. Accurate classification and retrieval of multimodal medical imaging data is the key challenge for the CBMIR system. Most previous attempts use handcrafted features for medical image classification and retrieval, which show low performance for a massive collection of multimodal databases. Although there are a few previous studies on the use of deep features for classification, the number of classes is very small. To solve this problem, we propose the classification-based retrieval system of the multimodal medical images from various types of imaging modalities by using the technique of artificial intelligence, named as an enhanced residual network (ResNet). Experimental results with 12 databases including 50 classes demonstrate that the accuracy and F1.score by our method are respectively 81.51% and 82.42% which are higher than those by the previous method of CBMIR (the accuracy of 69.71% and F1.score of 69.63%).


Author(s):  
Lakshminarayana M ◽  
Mrinal Sarvagya

Compressive sensing is one of teh cost effective solution towards performing compression of heavier form of signals. We reviewed the existing research contribution towards compressive sensing to find that existing system doesnt offer any form of optimization for which reason the signal are superiorly compressed but at the cost of enough resources. Therefore, we introduce a framework that optimizes the performance of the compressive sensing by introducing 4 sequential algorithms for performing Random Sampling, Lossless Compression for region-of-interest, Compressive Sensing using transform-based scheme, and optimization. The contribution of proposed paper is a good balance between computational efficiency and quality of reconstructed medical image when transmitted over network with low channel capacity. The study outcome shows that proposed system offers maximum signal quality and lower algorithm processing time in contrast to existing compression techniuqes on medical images.


Author(s):  
Surekah Borra ◽  
Rohit Thanki

In this article, a blind and robust medical image watermarking technique based on Finite Ridgelet Transform (FRT) and Singular Value Decomposition (SVD) is proposed. A host medical image is first transformed into 16 × 16 non-overlapping blocks and then ridgelet transform is applied on the individual blocks to obtain sets of ridgelet coefficients. SVD is then applied on these sets, to obtain the corresponding U, S and V matrix. The watermark information is embedded into the host medical image by modification of the value of the significant elements of U matrix. This proposed technique is tested on various types of medical images such as X-ray and CT scan. The simulation results revealed that this technique provides better imperceptibility, with an average PSNR being 42.95 dB for all test medical images. This technique also overcomes the limitation of the existing technique which is applicable on only the Region of Interest (ROI) of the medical image.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Veturia Chiroiu ◽  
Ligia Munteanu ◽  
Rodica Ioan ◽  
Ciprian Dragne ◽  
Luciana Majercsik

AbstractThe inverse sonification problem is investigated in this article in order to detect hardly capturing details in a medical image. The direct problem consists in converting the image data into sound signals by a transformation which involves three steps - data, acoustics parameters and sound representations. The inverse problem is reversing back the sound signals into image data. By using the known sonification operator, the inverse approach does not bring any gain in the sonified medical imaging. The replication of the image already known does not help the diagnosis and surgical operation. In order to bring gains in the medical imaging, a new sonification operator is advanced in this paper, by using the Burgers equation of sound propagation. The sonified medical imaging is useful in interpreting the medical imaging that, however powerful they may be, are never good enough to aid tumour surgery. The inverse approach is exercised on several medical images used to surgical operations.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. Eswaraiah ◽  
E. Sreenivasa Reddy

In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1590
Author(s):  
Laith Alzubaidi ◽  
Muthana Al-Amidie ◽  
Ahmed Al-Asadi ◽  
Amjad J. Humaidi ◽  
Omran Al-Shamma ◽  
...  

Deep learning requires a large amount of data to perform well. However, the field of medical image analysis suffers from a lack of sufficient data for training deep learning models. Moreover, medical images require manual labeling, usually provided by human annotators coming from various backgrounds. More importantly, the annotation process is time-consuming, expensive, and prone to errors. Transfer learning was introduced to reduce the need for the annotation process by transferring the deep learning models with knowledge from a previous task and then by fine-tuning them on a relatively small dataset of the current task. Most of the methods of medical image classification employ transfer learning from pretrained models, e.g., ImageNet, which has been proven to be ineffective. This is due to the mismatch in learned features between the natural image, e.g., ImageNet, and medical images. Additionally, it results in the utilization of deeply elaborated models. In this paper, we propose a novel transfer learning approach to overcome the previous drawbacks by means of training the deep learning model on large unlabeled medical image datasets and by next transferring the knowledge to train the deep learning model on the small amount of labeled medical images. Additionally, we propose a new deep convolutional neural network (DCNN) model that combines recent advancements in the field. We conducted several experiments on two challenging medical imaging scenarios dealing with skin and breast cancer classification tasks. According to the reported results, it has been empirically proven that the proposed approach can significantly improve the performance of both classification scenarios. In terms of skin cancer, the proposed model achieved an F1-score value of 89.09% when trained from scratch and 98.53% with the proposed approach. Secondly, it achieved an accuracy value of 85.29% and 97.51%, respectively, when trained from scratch and using the proposed approach in the case of the breast cancer scenario. Finally, we concluded that our method can possibly be applied to many medical imaging problems in which a substantial amount of unlabeled image data is available and the labeled image data is limited. Moreover, it can be utilized to improve the performance of medical imaging tasks in the same domain. To do so, we used the pretrained skin cancer model to train on feet skin to classify them into two classes—either normal or abnormal (diabetic foot ulcer (DFU)). It achieved an F1-score value of 86.0% when trained from scratch, 96.25% using transfer learning, and 99.25% using double-transfer learning.


2021 ◽  
Vol 1 (2) ◽  
pp. 71-80
Author(s):  
Revella E. A. Armya Armya ◽  
Adnan Mohsin Abdulazeez

Medical image segmentation plays an essential role in computer-aided diagnostic systems in various applications. Therefore, researchers are attracted to apply new algorithms for medical image processing because it is a massive investment in developing medical imaging methods such as dermatoscopy, X-rays, microscopy, ultrasound, computed tomography (CT), positron emission tomography, and magnetic resonance imaging. (Magnetic Resonance Imaging), So segmentation of medical images is considered one of the most important medical imaging processes because it extracts the field of interest from the Return on investment (ROI) through an automatic or semi-automatic process. The medical image is divided into regions based on the specific descriptions, such as tissue/organ division in medical applications for border detection, tumor detection/segmentation, and comprehensive and accurate detection. Several methods of segmentation have been proposed in the literature, but their efficacy is difficult to compare. To better address, this issue, a variety of measurement standards have been suggested to decide the consistency of the segmentation outcome. Unsupervised ranking criteria use some of the statistics in the hash score based on the original picture. The key aim of this paper is to study some literature on unsupervised algorithms (K-mean, K-medoids) and to compare the working efficiency of unsupervised algorithms with different types of medical images.


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1551-1561 ◽  
Author(s):  
Milan Pavlovic ◽  
Ivan Ciric ◽  
Danijela Ristic-Durrant ◽  
Vlastimir Nikolic ◽  
Milos Simonovic ◽  
...  

In this paper, an advanced thermal camera-based system for detection of objects on rail tracks is presented. Developed system is powered by advanced image processing algorithm, in order to achieve greater reliability and robustness, and tested on set of infrared images captured at night conditions. The goal of this system is to detect objects on rail tracks and next to them and estimate distances between camera stand and detected objects. For that purpose, different edge detection methods are tested, and finally Canny edge detector is selected for rail track detection and for determination of region of interest, further used for analysis in object detection process. In determined region of interest, region-based segmentation is used for object detection. For estimation of distances between camera stand and detected objects, homography based method is used. Validation of estimated distances is done, in respect to real measured distances from camera stand to objects (humans) involved in experiment. Distances are estimated with a maximum error of 2%. System can provide reliable object detection, as well as distance estimation, and for improved robustness and adaptability, artificial intelligence tools can be used.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2239-2248

For delivering effective health medical images and Electronic Patient Record (EPR) play an important role and these are stored in cloud, remote medical care and tele medicine service. For health care system, all the medical image data are stored in third party a server that is cloud. So, there is more chance to process or change the medical images as well as patient’s records which leads to health-related issues. To prevent the medical details from the hackers, many techniques are proposed and analyzed by the researchers. Anyway, data corruption is done by the attackers till now. In order to improve the security for data, this paper proposes a steganography technique which embed the important details into the medical image by using Wavelet Packet Transform (WPT) without affecting Region of Interest (ROI) which is useful for further diagnosis. Before embedding the patient’s record, these data are encrypted by using ElGamal Encryption technique which provides more security to the data. It is observed from the simulation results that the proposed technique produces better performance in terms of MSE, PSNR and WPSNR values. The PSNR value of the proposed system can increase 8.8%, 6.2%, 12.5%, 9.6%, 6.7% and 6.9% for embedding rate 5%, 10%, 20%, 25%, 30% and 40% respectively from the existing (DWT-ElGamal) technique.


Sign in / Sign up

Export Citation Format

Share Document