scholarly journals Real-Time Predictive Analytics for Sepsis Level and Therapeutic Plans in Intensive Care Medicine

Author(s):  
João M. C. Gonçalves ◽  
Filipe Portela ◽  
Manuel F. Santos ◽  
Álvaro Silva ◽  
José Machado ◽  
...  

Optimal treatments for patients with microbiological problems depend significantly on the ability of the attending physicians to predict sepsis level. A set of Data Mining (DM) models has been developed using forecasting techniques and classification models to aid decision making by physicians about the appropriate, and most effective, therapeutic plan to adopt in specific situations. A combination of Decision Trees, Support Vector Machines and Naïve Bayes classifier were being used to generate the DM models. Confusion Matrix, including associated metrics, and Cross-validation were used to evaluate the models. Associated metrics used to identify the most relevant measures to predict sepsis level and treatment procedures include the analysis of the total error rate, sensitivity, specificity, and accuracy measures. The data used in DM models were collected at the Intensive Care Unit of the Centro Hospitalar do Porto, in Oporto, Portugal. Encapsulated within a supervised learning context, classification models were applied to predict sepsis level and direct the therapeutic plan for patients with sepsis. This work concludes that it was possible to predict sepsis level (2nd and 3rd) with great accuracy (accuracy: 100%), but not for the therapeutic plan (best accuracy level: 62.8%).

Statistical learning is one of the most notable fields studied by the researchers to understand the data in the present scenario. Recent advances in the field of machine learning and artificial intelligence have been keen to develop more powerful automated techniques for predictive modeling, specifically in regression and classification models. These approaches fall under supervised statistical learning techniques, many conventional techniques are very complex to the data when it has larger volumes, i.e., if the data deviates from the model assumption, then the conventional procedure’s results does not have the trustworthy. This paper explores and compares the classical methods with the alternatives in the context of classification, like logistic regression and support vector machine. The efficiency of these procedures has been evaluated through various measures such as confusion matrix and misclassification rate under real environment


2018 ◽  
Vol 210 ◽  
pp. 02014
Author(s):  
Plamen Daskalov ◽  
Eleonora Kirilova ◽  
Tzvetelina Georgieva

This paper presents algorithms for pre-processing, feature selection and classifier design which are used for Parameter Refining in the task of development of an automatic system for recognition and grading of corn seeds with external signs of Fusarium Moniliforme disease. The abilities of several feature selection methods – FDR, Scatter matrices and Stepwise Discriminant Analysis and two classification methods - Support Vector Machine (SVM) and K-Nearest Neighbours (K-NN) are investigated. Design and implementation of the system also has been showed. The system could continually present one by one positioned corn kernels to CCD camera, perform a classification procedure of captured images and discharge seeds to assigned containers. The software was developed in LabVIEW environment including image analysis and classification procedures performed using MATLAB Script. Results for total error rate of 8.4% - 7.2% from preliminary classification related to 8480 seeds from16 Bulgarian varieties and total error rate of 6.95% - 20.4% for experimental results obtained with the system during the control measurements of the seed sample are obtained.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1994
Author(s):  
Qian Ma ◽  
Wenting Han ◽  
Shenjin Huang ◽  
Shide Dong ◽  
Guang Li ◽  
...  

This study explores the classification potential of a multispectral classification model for farmland with planting structures of different complexity. Unmanned aerial vehicle (UAV) remote sensing technology is used to obtain multispectral images of three study areas with low-, medium-, and high-complexity planting structures, containing three, five, and eight types of crops, respectively. The feature subsets of three study areas are selected by recursive feature elimination (RFE). Object-oriented random forest (OB-RF) and object-oriented support vector machine (OB-SVM) classification models are established for the three study areas. After training the models with the feature subsets, the classification results are evaluated using a confusion matrix. The OB-RF and OB-SVM models’ classification accuracies are 97.09% and 99.13%, respectively, for the low-complexity planting structure. The equivalent values are 92.61% and 99.08% for the medium-complexity planting structure and 88.99% and 97.21% for the high-complexity planting structure. For farmland with fragmentary plots and a high-complexity planting structure, as the planting structure complexity changed from low to high, both models’ overall accuracy levels decreased. The overall accuracy of the OB-RF model decreased by 8.1%, and that of the OB-SVM model only decreased by 1.92%. OB-SVM achieves an overall classification accuracy of 97.21%, and a single-crop extraction accuracy of at least 85.65%. Therefore, UAV multispectral remote sensing can be used for classification applications in highly complex planting structures.


2020 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Jingtao Li ◽  
Yonglin Shen ◽  
Chao Yang

Due to the increasing demand for the monitoring of crop conditions and food production, it is a challenging and meaningful task to identify crops from remote sensing images. The state-of the-art crop classification models are mostly built on supervised classification models such as support vector machines (SVM), convolutional neural networks (CNN), and long- and short-term memory neural networks (LSTM). Meanwhile, as an unsupervised generative model, the adversarial generative network (GAN) is rarely used to complete classification tasks for agricultural applications. In this work, we propose a new method that combines GAN, CNN, and LSTM models to classify crops of corn and soybeans from remote sensing time-series images, in which GAN’s discriminator was used as the final classifier. The method is feasible on the condition that the training samples are small, and it fully takes advantage of spectral, spatial, and phenology features of crops from satellite data. The classification experiments were conducted on crops of corn, soybeans, and others. To verify the effectiveness of the proposed method, comparisons with models of SVM, SegNet, CNN, LSTM, and different combinations were also conducted. The results show that our method achieved the best classification results, with the Kappa coefficient of 0.7933 and overall accuracy of 0.86. Experiments in other study areas also demonstrate the extensibility of the proposed method.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 804
Author(s):  
Jasminka Hasic Telalovic ◽  
Serena Pillozzi ◽  
Rachele Fabbri ◽  
Alice Laffi ◽  
Daniele Lavacchi ◽  
...  

The application of machine learning (ML) techniques could facilitate the identification of predictive biomarkers of somatostatin analog (SSA) efficacy in patients with neuroendocrine tumors (NETs). We collected data from 74 patients with a pancreatic or gastrointestinal NET who received SSA as first-line therapy. We developed three classification models to predict whether the patient would experience a progressive disease (PD) after 12 or 18 months based on clinic-pathological factors at the baseline. The dataset included 70 samples and 15 features. We initially developed three classification models with accuracy ranging from 55% to 70%. We then compared ten different ML algorithms. In all but one case, the performance of the Multinomial Naïve Bayes algorithm (80%) was the highest. The support vector machine classifier (SVC) had a higher performance for the recall metric of the progression-free outcome (97% vs. 94%). Overall, for the first time, we documented that the factors that mainly influenced progression-free survival (PFS) included age, the number of metastatic sites and the primary site. In addition, the following factors were also isolated as important: adverse events G3–G4, sex, Ki67, metastatic site (liver), functioning NET, the primary site and the stage. In patients with advanced NETs, ML provides a predictive model that could potentially be used to differentiate prognostic groups and to identify patients for whom SSA therapy as a single agent may not be sufficient to achieve a long-lasting PFS.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1668
Author(s):  
Zongming Dai ◽  
Kai Hu ◽  
Jie Xie ◽  
Shengyu Shen ◽  
Jie Zheng ◽  
...  

Traditional co-word networks do not discriminate keywords of researcher interest from general keywords. Co-word networks are therefore often too general to provide knowledge if interest to domain experts. Inspired by the recent work that uses an automatic method to identify the questions of interest to researchers like “problems” and “solutions”, we try to answer a similar question “what sensors can be used for what kind of applications”, which is great interest in sensor- related fields. By generalizing the specific questions as “questions of interest”, we built a knowledge network considering researcher interest, called bipartite network of interest (BNOI). Different from a co-word approaches using accurate keywords from a list, BNOI uses classification models to find possible entities of interest. A total of nine feature extraction methods including N-grams, Word2Vec, BERT, etc. were used to extract features to train the classification models, including naïve Bayes (NB), support vector machines (SVM) and logistic regression (LR). In addition, a multi-feature fusion strategy and a voting principle (VP) method are applied to assemble the capability of the features and the classification models. Using the abstract text data of 350 remote sensing articles, features are extracted and the models trained. The experiment results show that after removing the biased words and using the ten-fold cross-validation method, the F-measure of “sensors” and “applications” are 93.2% and 85.5%, respectively. It is thus demonstrated that researcher questions of interest can be better answered by the constructed BNOI based on classification results, comparedwith the traditional co-word network approach.


Sign in / Sign up

Export Citation Format

Share Document