Sentiment Analysis Using Cuckoo Search for Optimized Feature Selection on Kaggle Tweets

2019 ◽  
Vol 9 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Akshi Kumar ◽  
Arunima Jaiswal ◽  
Shikhar Garg ◽  
Shobhit Verma ◽  
Siddhant Kumar

Selecting the optimal set of features to determine sentiment in online textual content is imperative for superior classification results. Optimal feature selection is computationally hard task and fosters the need for devising novel techniques to improve the classifier performance. In this work, the binary adaptation of cuckoo search (nature inspired, meta-heuristic algorithm) known as the Binary Cuckoo Search is proposed for the optimum feature selection for a sentiment analysis of textual online content. The baseline supervised learning techniques such as SVM, etc., have been firstly implemented with the traditional tf-idf model and then with the novel feature optimization model. Benchmark Kaggle dataset, which includes a collection of tweets is considered to report the results. The results are assessed on the basis of performance accuracy. Empirical analysis validates that the proposed implementation of a binary cuckoo search for feature selection optimization in a sentiment analysis task outperforms the elementary supervised algorithms based on the conventional tf-idf score.

Sentiment analysis is an area of natural language processing (NLP) and machine learning where the text is to be categorized into predefined classes i.e. positive and negative. As the field of internet and social media, both are increasing day by day, the product of these two nowadays is having many more feedbacks from the customer than before. Text generated through social media, blogs, post, review on any product, etc. has become the bested suited cases for consumer sentiment, providing a best-suited idea for that particular product. Features are an important source for the classification task as more the features are optimized, the more accurate are results. Therefore, this research paper proposes a hybrid feature selection which is a combination of Particle swarm optimization (PSO) and cuckoo search. Due to the subjective nature of social media reviews, hybrid feature selection technique outperforms the traditional technique. The performance factors like f-measure, recall, precision, and accuracy tested on twitter dataset using Support Vector Machine (SVM) classifier and compared with convolution neural network. Experimental results of this paper on the basis of different parameters show that the proposed work outperforms the existing work


Author(s):  
Quoc-Tuan Truong ◽  
Hady W. Lauw

Detecting the sentiment expressed by a document is a key task for many applications, e.g., modeling user preferences, monitoring consumer behaviors, assessing product quality. Traditionally, the sentiment analysis task primarily relies on textual content. Fueled by the rise of mobile phones that are often the only cameras on hand, documents on the Web (e.g., reviews, blog posts, tweets) are increasingly multimodal in nature, with photos in addition to textual content. A question arises whether the visual component could be useful for sentiment analysis as well. In this work, we propose Visual Aspect Attention Network or VistaNet, leveraging both textual and visual components. We observe that in many cases, with respect to sentiment detection, images play a supporting role to text, highlighting the salient aspects of an entity, rather than expressing sentiments independently of the text. Therefore, instead of using visual information as features, VistaNet relies on visual information as alignment for pointing out the important sentences of a document using attention. Experiments on restaurant reviews showcase the effectiveness of visual aspect attention, vis-à-vis visual features or textual attention.


Author(s):  
Kauser Ahmed P ◽  
Senthil Kumar N

Due to advancement in technology, a huge volume of data is generated. Extracting knowledgeable data from this voluminous information is a difficult task. Therefore, machine learning techniques like classification, clustering, information retrieval, feature selection and data analysis has become core of recent research. These techniques can also be solved using Nature Inspired Algorithms. Nature Inspired Algorithms is inspired by processes, observed from nature. Feature Selection is helpful in finding subset of prominent components to enhance prescient precision and to expel the excess features. This chapter surveys seven nature inspired algorithms, namely Particle Swarm Optimization, Ant Colony Optimization Algorithms, Artificial Bees Colony Algorithms, Firefly Algorithms, Bat Algorithms, Cuckoo Search and Genetic Algorithms and its application in feature selections. The significance of this chapter is to present comprehensive review of nature inspired algorithms to be applied in feature selections.


2021 ◽  
Vol 13 (4) ◽  
pp. 2397
Author(s):  
Ainhoa Serna ◽  
Aitor Soroa ◽  
Rodrigo Agerri

Users voluntarily generate large amounts of textual content by expressing their opinions, in social media and specialized portals, on every possible issue, including transport and sustainability. In this work we have leveraged such User Generated Content to obtain a high accuracy sentiment analysis model which automatically analyses the negative and positive opinions expressed in the transport domain. In order to develop such model, we have semiautomatically generated an annotated corpus of opinions about transport, which has then been used to fine-tune a large pretrained language model based on recent deep learning techniques. Our empirical results demonstrate the robustness of our approach, which can be applied to automatically process massive amounts of opinions about transport. We believe that our method can help to complement data from official statistics and traditional surveys about transport sustainability. Finally, apart from the model and annotated dataset, we also provide a transport classification score with respect to the sustainability of the transport types found in the use case dataset.


Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.


2021 ◽  
pp. 100572
Author(s):  
Malek Alzaqebah ◽  
Khaoula Briki ◽  
Nashat Alrefai ◽  
Sami Brini ◽  
Sana Jawarneh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document