Hybrid Unsupervised Modeling of Air Pollution Impact to Cardiovascular and Respiratory Diseases

Author(s):  
Lazaros Iliadis ◽  
Vardis-Dimitris Anezakis ◽  
Konstantinos Demertzis ◽  
Georgios Mallinis

During the last few decades, climate change has increased air pollutant concentrations with a direct and serious effect on population health in urban areas. This research introduces a hybrid computational intelligence approach, employing unsupervised machine learning (UML), in an effort to model the impact of extreme air pollutants on cardiovascular and respiratory diseases of citizens. The system is entitled Air Pollution Climate Change Cardiovascular and Respiratory (APCCCR) and it combines the fuzzy chi square test (FUCS) with the UML self organizing maps algorithm. A major innovation of the system is the determination of the direct impact of air pollution (or of the indirect impact of climate change) to the health of the people, in a comprehensive manner with the use of fuzzy linguistics. The system has been applied and tested thoroughly with spatiotemporal data for the Thessaloniki urban area for the period 2004-2013.

2018 ◽  
Vol 6 (7) ◽  
pp. 1-124
Author(s):  
Martin L Williams ◽  
Sean Beevers ◽  
Nutthida Kitwiroon ◽  
David Dajnak ◽  
Heather Walton ◽  
...  

BackgroundThe UK’sClimate Change Act 2008(CCA; Great Britain.Climate Change Act 2008. Chapter 27. London: The Stationery Office; 2008) requires a reduction of 80% in carbon dioxide-equivalent emissions by 2050 on a 1990 base. This project quantified the impact of air pollution on health from four scenarios involving particulate matter of ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone (O3). Two scenarios met the CCA target: one with limited nuclear power build (nuclear replacement option; NRPO) and one with no policy constraint on nuclear (low greenhouse gas). Another scenario envisaged no further climate actions beyond those already agreed (‘baseline’) and the fourth kept 2011 concentrations constant to 2050 (‘2011’).MethodsThe UK Integrated MARKAL–EFOM System (UKTM) energy system model was used to develop the scenarios and produce projections of fuel use; these were used to produce air pollutant emission inventories for Great Britain (GB) for each scenario. The inventories were then used to run the Community Multiscale Air Quality model ‘air pollution model’ to generate air pollutant concentration maps across GB, which then, combined with relationships between concentrations and health outcomes, were used to calculate the impact on health from the air pollution emitted in each scenario. This is a significant improvement on previous health impact studies of climate policies, which have relied on emissions changes. Inequalities in exposure in different socioeconomic groups were also calculated, as was the economic impact of the pollution emissions.ResultsConcentrations of NO2declined significantly because of a high degree of electrification of the GB road transport fleet, although the NRPO scenario shows large increases in oxides of nitrogen emissions from combined heat and power (CHP) sources. Concentrations of PM2.5show a modest decrease by 2050, which would have been larger if it had not been for a significant increase in biomass (wood burning) use in the two CCA scenarios peaking in 2035. The metric quantifying long-term exposure to O3is projected to decrease, while the important short-term O3exposure metric increases. Large projected increases in future GB vehicle kilometres lead to increased non-exhaust PM2.5and particulate matter of ≤ 10 µm emissions. The two scenarios which achieve the CCA target resulted in more life-years lost from long-term exposures to PM2.5than in the baseline scenario. This is an opportunity lost and arises largely from the increase in biomass use, which is projected to peak in 2035. Reduced long-term exposures to NO2lead to many more life-years saved in the ‘CCA-compliant’ scenarios, but the association used may overestimate the effects of NO2itself. The more deprived populations are estimated currently to be exposed to higher concentrations than those less deprived, the contrast being largest for NO2. Despite reductions in concentrations in 2050, the most socioeconomically deprived are still exposed to higher concentrations than the less deprived.LimitationsModelling of the atmosphere is always uncertain; we have shown the model to be acceptable through comparison with observations. The necessary complexity of the modelling system has meant that only a small number of scenarios were run.ConclusionsWe have established a system which can be used to explore a wider range of climate policy scenarios, including more European and global scenarios as well as local measures. Future work could explore wood burning in more detail, in terms of the sectors in which it might be burned and the spatial distribution of this across the UK. Further analyses of options for CHP could also be explored. Non-exhaust emissions from road transport are an important source of particles and emission factors are uncertain. Further research on this area coupled with our modelling would be a valuable area of research.FundingThe National Institute for Health Research Public Health Research programme.


2015 ◽  
Vol 15 (19) ◽  
pp. 27041-27085
Author(s):  
K. Markakis ◽  
M. Valari ◽  
M. Engardt ◽  
G. Lacressonnière ◽  
R. Vautard ◽  
...  

Abstract. Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to −5 % for Paris and −2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between −10 and −5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting in a health impact perspective.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1628
Author(s):  
Houli Zhang ◽  
Shibing You ◽  
Miao Zhang ◽  
Difei Liu ◽  
Xuyan Wang ◽  
...  

The impact of air pollution on human health is becoming increasingly severe, and economic losses are a significant impediment to economic and social development. This paper investigates the impact of air pollutants on the respiratory system and its action mechanism by using information on inpatients with respiratory diseases from two IIIA (highest) hospitals in Wuhan from 2015 to 2019, information on air pollutants, and meteorological data, as well as relevant demographic and economic data in China. This paper describes the specific conditions of air pollutant concentrations and respiratory diseases, quantifies the degree of correlation between the two, and then provides a more comprehensive assessment of the economic losses using descriptive statistical methods, the generalized additive model (GAM), cost of illness approach (COI), and scenario analysis. According to the findings, the economic losses caused by PM2.5, PM10, SO2, NO2, and CO exposure are USD 103.17 million, USD 70.54 million, USD 98.02 million, USD 40.35 million, and USD 142.38 million, for a total of USD 454.46 billion, or approximately 0.20% of Wuhan’s GDP in 2019. If the government tightens control of major air pollutants and meets the WHO-recommended criterion values, the annual evitable economic losses would be approximately USD 69.4 million or approximately 0.03% of Wuhan’s GDP in 2019. As a result, the relevant government departments must strengthen air pollution control to mitigate the impact of air pollution on population health and the associated economic losses.


2013 ◽  
Vol 13 (15) ◽  
pp. 7451-7471 ◽  
Author(s):  
A. Colette ◽  
B. Bessagnet ◽  
R. Vautard ◽  
S. Szopa ◽  
S. Rao ◽  
...  

Abstract. To quantify changes in air pollution over Europe at the 2050 horizon, we designed a comprehensive modelling system that captures the external factors considered to be most relevant, and that relies on up-to-date and consistent sets of air pollution and climate policy scenarios. Global and regional climate as well as global chemistry simulations are based on the recent representative concentration pathways (RCP) produced for the Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate Change) whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment. We explored two diverse scenarios: a reference scenario where climate policies are absent and a mitigation scenario which limits global temperature rise to within 2 °C by the end of this century. This first assessment of projected air quality and climate at the regional scale based on CMIP5 (5th Coupled Model Intercomparison Project) climate simulations is in line with the existing literature using CMIP3. The discrepancy between air quality simulations obtained with a climate model or with meteorological reanalyses is pointed out. Sensitivity simulations show that the main factor driving future air quality projections is air pollutant emissions, rather than climate change or intercontinental transport of pollution. Whereas the well documented "climate penalty" that weights upon ozone (increase of ozone pollution with global warming) over Europe is confirmed, other features appear less robust compared to the literature, such as the impact of climate on PM2.5. The quantitative disentangling of external factors shows that, while several published studies focused on the climate penalty bearing upon ozone, the contribution of the global ozone burden is somewhat overlooked in the literature.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1490
Author(s):  
Zhihua Su ◽  
Xin Li ◽  
Yunlong Liu ◽  
Bing Deng

The lockdown during the coronavirus disease 2019 (COVID-19) pandemic provides a scarce opportunity to assess the efficiency of air pollution mitigation. Herein, the monitoring data of air pollutants were thoroughly analyzed together with meteorological parameters to explore the impact of human activity on the multi-time scale changes of air pollutant concentrations in Guiyang city, located in Southwest China. The results show that the COVID-19 lockdown had different effects on the criteria air pollutants, i.e., PM2.5 (diameter ≤ 2.5 μm), PM10 (diameter ≤ 10 μm), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) concentrations. The lockdown caused a significant drop in NO2 concentration. During the first-level lockdown period, the NO2 concentration declined sharply by 8.41 μg·m−3 (45.68%). The decrease in NO concentration caused the “titration effect” to weaken, leading to a sharp increase in O3 concentration. Although human activities resumed partially and the “titration effect” enhanced certainly during the second-level lockdown period, the meteorological conditions became more conducive to the formation of O3 by photochemical reactions. Atmosphere oxidation was enhanced to promote the generation of secondary aerosols through gas–particle transitions, thus compensating for the reduced primary emission of PM2.5. The implication of this study is that the appropriate air pollution control policies must be initiated to suppress the secondary generation of both PM2.5 and O3.


2016 ◽  
Vol 16 (4) ◽  
pp. 1877-1894 ◽  
Author(s):  
Konstantinos Markakis ◽  
Myrto Valari ◽  
Magnuz Engardt ◽  
Gwendoline Lacressonniere ◽  
Robert Vautard ◽  
...  

Abstract. Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modelled at 4 and 1 km horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine-resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional-scale emission projections by comparing modelled pollutant concentrations between the fine- and coarse-scale simulations over the study areas. We show that over urban areas with major regional contribution (e.g. the city of Stockholm) the bias related to coarse-scale projections may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modelling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily mean and maximum) is up to −5 % for Paris and −2 % for Stockholm city. The climate benefit on PM2.5 and PM10 in Paris is between −5 and −10 %, while for Stockholm we estimate mixed trends of up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily mean and maximum ozone and 20 % for PM. Through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily mean ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting from a health impact perspective.


2022 ◽  
Vol 4 (1) ◽  
pp. 167-176
Author(s):  
Suwardi Annas ◽  
Uca Uca ◽  
Irwan Irwan ◽  
Rahmat Hesha Safei ◽  
Zulkifli Rais

Air pollution is an important environmental problem for specific areas, including Makassar City, Indonesia. The increase should be monitored and evaluated, especially in urban areas that are dense with vehicles and factories. This is a challenge for local governments in urban planning and policy-making to fulfill the information about the impact of air pollution. The clustering of starting points for the distribution areas can ease the government to determine policies and prevent the impact. The k-Means initial clustering method was used while the Self-Organizing Maps (SOM) visualized the clustering results. Furthermore, the Geographic Information System (GIS) visualized the results of regional clustering on a map of Makassar City. The air quality parameters used are Suspended Particles (TSP), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Surface Ozone (O3), and Lead (Pb) which are measured during the day and at night. The results showed that the air contains more CO, and at night, the levels are reduced in some areas. Therefore, the density of traffic, industry and construction work contributes significantly to the spread of CO. Air conditions vary, such as high CO levels during the day and TSP at night. Also, there is a phenomenon at night that a group does not have SO2 and O3 simultaneously. The results also show that the integration of k-Means and SOM for regional clustering can be appropriately mapped through GIS visualization.


Author(s):  
Ray F. Nassar

Air pollution is a serious global issue, responsible for approximately one in every nine deaths each year, ranking it among the greatest environmental hazards to human health. It is of particular concern in urban areas, where elevated pollutant concentrations and potential sufferers converge. Over one half of the world’s population presently lives in urban areas, and the urban population ratio is expected to reach 68% by 2050. Common air pollutants include particulate matter (PM), sulphur dioxide (SO2), ground-level ozone (O3), nitrogen oxide (NOx) and carbon monoxide (CO). While elevated rates of air pollution pose serious health risks for humans, outdoor plants can help reduce the harmful effects of air pollution by filtering and purifying the air around us.In this project Common Ivy, Aster and Miniature Andromeda plants were evaluated for air pollutant mitigation. In this study we developed a vegetation barrier model with the plant located in the middle of the greenhouse box, and air pollutant was sprayed on one side of the plant. Dispersion patterns of sprayed pollutants were tested with and without vegetation barrier. Measurements of carbon dioxide (CO2), Formaldehyde (HCHO), Total Volatile Organic Compounds (TVOC), and Particulate Matter (PM2.5/PM10) were taken before spraying, then at 0 and 30 minutes after spraying, using both monitors.The results show mitigation rates (in 177 ft3 of air after 30 min): for TVOC the minimum reduction is 5 mg/m3; for HCHO, 1 mg/m3; for CO2, 2000 ppm; for PM2.5, 2000 ug/m3; and for PM10 it was 1000 ug/m3.


2021 ◽  
Author(s):  
Hervé Petetin ◽  
Dene Bowdalo ◽  
Hicham Achebak ◽  
Albert Soret ◽  
Marc Guevara ◽  
...  

<p>The mobility restrictions implemented to slow down the transmission of the new coronavirus disease (COVID-19) drastically altered Spanish anthropogenic emissions in several sectors, leading to substantial impacts on air pollutant concentrations. In order to reliably quantify these changes, the confounding effects of meteorological variability need to be properly taken into account. We thus designed an innovative methodology relying on the use of machine learning (ML) models fed with ERA5 meteorological reanalysis data and other time features, to estimate more accurately the so-called business-as-usual (BAU) pollutant concentrations that would have been observed in the absence of lockdown (Petetin et al., 2020). The difference with concentrations actually observed during the lockdown give meteorology-normalized estimates of the AQ changes due to the altered anthropogenic emission forcing, independently from the meteorological variability. Importantly, our methodology includes a conservative estimation of the uncertainties, which allows to highlight statistically significant changes. This study focuses on NO2 and O3. We applied this analysis for a selection of urban background and traffic stations covering more than 50 Spanish provinces and islands. Validation results indicate that the method usually performs well for estimating BAU concentrations (mean absolute bias below +6%, root mean square error around 25-30% and correlation above 0.80).</p><p>The COVID-19-related lockdown has induced a strong reduction (-50% on average) of NO2 concentrations in Spanish urban areas, although with some spatial variability among the provinces. In largest cities, stronger reductions were found at traffic stations compared to urban background ones, reflecting the major impact of the lockdown on traffic emissions. Substantial discrepancies with changes obtained considering a climatological averaged NO2 concentrations were found, highlighting the interest of such ML-based weather-normalization method. Compared to NO2, the impact on O3 is lower and more heterogeneous. In many cities, O3 levels slightly increased (likely due to a reduced titration by NO), but these increments often remain within the (95% confidence level) uncertainties of our methodology. However, during the most stringent phase of the lockdown (beginning of April and the few following days), a clearer O3 increase is found, reaching the statistical significance in several Spanish cities (e.g. Albacete, Barcelona, Castellón, Mallorca, Murcia, Málaga).</p><p>These results are of strong interest for quantifying the corresponding health impacts of these AQ changes, especially for showing the potential trade-offs between health benefits induced by the reduction of NO2 and enhanced mortality due to higher O3.</p><p>Petetin, H., Bowdalo, D., Soret, A., Guevara, M., Jorba, O., Serradell, K., and Pérez García-Pando, C.: Meteorology-normalized impact of the COVID-19 lockdown upon NO<sub>2</sub> pollution in Spain, Atmos. Chem. Phys., 20, 11119–11141, https://doi.org/10.5194/acp-20-11119-2020, 2020.</p>


Author(s):  
Olena Voloshkina ◽  
Tetyana Shabliy ◽  
Volodymyr Trofimovich ◽  
Volodymyr Efimenko ◽  
Artem Goncharenko ◽  
...  

The purpose of this paper is to confirm for the conditions of Ukraine the hypothesis of a number of foreign authors on the relationship between the presence of air pollution by aerosol particles in urban areas and the number of patients with COVID-19. On the example of the main large cities of Ukraine the analysis between temperature factors, dust pollution of the atmospheric phenomena and processes of distribution of morbidity of the population on COVID-19 is made. The linear dependences in the logical coordinates between nature are obtained due to the confirmation of the cases of morbidity and the index of aerosol pollution of the atmospheric air of urban areas by solid private particles PM2.5 (AQIPM2.5). The correlation coefficients of the obtained dependences are in the range of 0.65–0.91. These data suggest the possibility of unification of data for the country for different climatic zones to assess and predict the incidence of population depending on air pollution in urban areas and climatic conditions, and may be promising in the future to find ways to reduce the impact of aerosols in the air on the human body and the purpose of finer cleaning in production processes and air exchange technologies in modern buildings and structures. According to the authors, there is a need for further research on the impact of humidity and the impact of the percentage distribution of natural and anthropogenic aerosols in the air of urban areas. Such studies will further make more accurate predictions about the impact of air pollution on human health in the context of global climate change.


Sign in / Sign up

Export Citation Format

Share Document