Improving Gender Classification Using an Extended Set of Local Binary Patterns

Author(s):  
Abbas Roayaei Ardakany ◽  
Mircea Nicolescu ◽  
Monica Nicolescu

In this article, the authors designed and implemented an efficient gender recognition system with high classification accuracy. In this regard, they proposed a novel local binary descriptor capable of extracting more informative and discriminative local features for the purpose of gender classification. Traditional Local binary patterns include information about the relationship between a central pixel value and those of its neighboring pixels in a very compact manner. In the proposed method the authors incorporate into the descriptor more information from the neighborhood by using extra patterns. They have evaluated their approach on the standard FERET and CAS-PEAL databases and the experiments show that the proposed approach offers superior results compared to techniques using state-of-the-art descriptors such as LBP, LDP and HoG. The results demonstrate the effectiveness and robustness of the proposed system with 98.33% classification accuracy.

2022 ◽  
Vol 14 (2) ◽  
pp. 259
Author(s):  
Yuting Yang ◽  
Kenneth Kin-Man Lam ◽  
Xin Sun ◽  
Junyu Dong ◽  
Redouane Lguensat

Marine hydrological elements are of vital importance in marine surveys. The evolution of these elements can have a profound effect on the relationship between human activities and marine hydrology. Therefore, the detection and explanation of the evolution laws of marine hydrological elements are urgently needed. In this paper, a novel method, named Evolution Trend Recognition (ETR), is proposed to recognize the trend of ocean fronts, being the most important information in the ocean dynamic process. Therefore, in this paper, we focus on the task of ocean-front trend classification. A novel classification algorithm is first proposed for recognizing the ocean-front trend, in terms of the ocean-front scale and strength. Then, the GoogLeNet Inception network is trained to classify the ocean-front trend, i.e., enhancing or attenuating. The ocean-front trend is classified using the deep neural network, as well as a physics-informed classification algorithm. The two classification results are combined to make the final decision on the trend classification. Furthermore, two novel databases were created for this research, and their generation method is described, to foster research in this direction. These two databases are called the Ocean-Front Tracking Dataset (OFTraD) and the Ocean-Front Trend Dataset (OFTreD). Moreover, experiment results show that our proposed method on OFTreD achieves a higher classification accuracy, which is 97.5%, than state-of-the-art networks. This demonstrates that the proposed ETR algorithm is highly promising for trend classification.


Author(s):  
Hanmo Wang ◽  
Runwu Zhou ◽  
Yi-Dong Shen

The success of batch mode active learning (BMAL) methods lies in selecting both representative and uncertain samples. Representative samples quickly capture the global structure of the whole dataset, while the uncertain ones refine the decision boundary. There are two principles, namely the direct approach and the screening approach, to make a trade-off between representativeness and uncertainty. Although widely used in literature, little is known about the relationship between these two principles. In this paper, we discover that the two approaches both have shortcomings in the initial stage of BMAL. To alleviate the shortcomings, we bound the certainty scores of unlabeled samples from below and directly combine this lower-bounded certainty with representativeness in the objective function. Additionally, we show that the two aforementioned approaches are mathematically equivalent to two special cases of our approach. To the best of our knowledge, this is the first work that tries to generalize the direct and screening approaches. The objective function is then solved by super-modularity optimization. Extensive experiments on fifteen datasets indicate that our method has significantly higher classification accuracy on testing data than the latest state-of-the-art BMAL methods, and also scales better even when the size of the unlabeled pool reaches 106.


Author(s):  
Jian Sun ◽  
Hongyu Jia ◽  
Bo Hu ◽  
Xiao Huang ◽  
Hao Zhang ◽  
...  

Very Fast Decision Tree (VFDT) is one of the most widely used online decision tree induction algorithms, and it provides high classification accuracy with theoretical guarantees. In VFDT, the split-attempt operation is essential for leaf-split. It is computation-intensive since it computes the heuristic measure of all attributes of a leaf. To reduce split-attempts, VFDT tries to split at constant intervals (for example, every 200 examples). However, this mechanism introduces split-delay for split can only happen at fixed intervals, which slows down the growth of VFDT and finally lowers accuracy. To address this problem, we first devise an online incremental algorithm that computes the heuristic measure of an attribute with a much lower computational cost. Then a subset of attributes is carefully selected to find a potential split timing using this algorithm. A split-attempt will be carried out once the timing is verified. By the whole process, computational cost and split-delay are lowered significantly. Comprehensive experiments are conducted using multiple synthetic and real datasets. Compared with state-of-the-art algorithms, our method reduces split-attempts by about 5 to 10 times on average with much lower split-delay, which makes our algorithm run faster and more accurate.


2018 ◽  
pp. 2234-2268
Author(s):  
Angkoon Phinyomark ◽  
Franck Quaine ◽  
Yann Laurillau

Muscle-computer interfaces (MCIs) based on surface electromyography (EMG) pattern recognition have been developed based on two consecutive components: feature extraction and classification algorithms. Many features and classifiers are proposed and evaluated, which yield the high classification accuracy and the high number of discriminated motions under a single-session experimental condition. However, there are many limitations to use MCIs in the real-world contexts, such as the robustness over time, noise, or low-level EMG activities. Although the selection of the suitable robust features can solve such problems, EMG pattern recognition has to design and train for a particular individual user to reach high accuracy. Due to different body compositions across users, a feasibility to use anthropometric variables to calibrate EMG recognition system automatically/semi-automatically is proposed. This chapter presents the relationships between robust features extracted from actions associated with surface EMG signals and twelve related anthropometric variables. The strong and significant associations presented in this chapter could benefit a further design of the MCIs based on EMG pattern recognition.


Author(s):  
Angkoon Phinyomark ◽  
Franck Quaine ◽  
Yann Laurillau

Muscle-computer interfaces (MCIs) based on surface electromyography (EMG) pattern recognition have been developed based on two consecutive components: feature extraction and classification algorithms. Many features and classifiers are proposed and evaluated, which yield the high classification accuracy and the high number of discriminated motions under a single-session experimental condition. However, there are many limitations to use MCIs in the real-world contexts, such as the robustness over time, noise, or low-level EMG activities. Although the selection of the suitable robust features can solve such problems, EMG pattern recognition has to design and train for a particular individual user to reach high accuracy. Due to different body compositions across users, a feasibility to use anthropometric variables to calibrate EMG recognition system automatically/semi-automatically is proposed. This chapter presents the relationships between robust features extracted from actions associated with surface EMG signals and twelve related anthropometric variables. The strong and significant associations presented in this chapter could benefit a further design of the MCIs based on EMG pattern recognition.


Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1367
Author(s):  
Raghida El El Saj ◽  
Ehsan Sedgh Sedgh Gooya ◽  
Ayman Alfalou ◽  
Mohamad Khalil

Privacy-preserving deep neural networks have become essential and have attracted the attention of many researchers due to the need to maintain the privacy and the confidentiality of personal and sensitive data. The importance of privacy-preserving networks has increased with the widespread use of neural networks as a service in unsecured cloud environments. Different methods have been proposed and developed to solve the privacy-preserving problem using deep neural networks on encrypted data. In this article, we reviewed some of the most relevant and well-known computational and perceptual image encryption methods. These methods as well as their results have been presented, compared, and the conditions of their use, the durability and robustness of some of them against attacks, have been discussed. Some of the mentioned methods have demonstrated an ability to hide information and make it difficult for adversaries to retrieve it while maintaining high classification accuracy. Based on the obtained results, it was suggested to develop and use some of the cited privacy-preserving methods in applications other than classification.


Author(s):  
Manjunath K. E. ◽  
Srinivasa Raghavan K. M. ◽  
K. Sreenivasa Rao ◽  
Dinesh Babu Jayagopi ◽  
V. Ramasubramanian

In this study, we evaluate and compare two different approaches for multilingual phone recognition in code-switched and non-code-switched scenarios. First approach is a front-end Language Identification (LID)-switched to a monolingual phone recognizer (LID-Mono), trained individually on each of the languages present in multilingual dataset. In the second approach, a common multilingual phone-set derived from the International Phonetic Alphabet (IPA) transcription of the multilingual dataset is used to develop a Multilingual Phone Recognition System (Multi-PRS). The bilingual code-switching experiments are conducted using Kannada and Urdu languages. In the first approach, LID is performed using the state-of-the-art i-vectors. Both monolingual and multilingual phone recognition systems are trained using Deep Neural Networks. The performance of LID-Mono and Multi-PRS approaches are compared and analysed in detail. It is found that the performance of Multi-PRS approach is superior compared to more conventional LID-Mono approach in both code-switched and non-code-switched scenarios. For code-switched speech, the effect of length of segments (that are used to perform LID) on the performance of LID-Mono system is studied by varying the window size from 500 ms to 5.0 s, and full utterance. The LID-Mono approach heavily depends on the accuracy of the LID system and the LID errors cannot be recovered. But, the Multi-PRS system by virtue of not having to do a front-end LID switching and designed based on the common multilingual phone-set derived from several languages, is not constrained by the accuracy of the LID system, and hence performs effectively on code-switched and non-code-switched speech, offering low Phone Error Rates than the LID-Mono system.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yikui Zhai ◽  
He Cao ◽  
Wenbo Deng ◽  
Junying Gan ◽  
Vincenzo Piuri ◽  
...  

Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP), which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM (max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet’s performance. Extensive experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can achieve 67.48% classification accuracy.


2021 ◽  
Vol 13 (10) ◽  
pp. 1950
Author(s):  
Cuiping Shi ◽  
Xin Zhao ◽  
Liguo Wang

In recent years, with the rapid development of computer vision, increasing attention has been paid to remote sensing image scene classification. To improve the classification performance, many studies have increased the depth of convolutional neural networks (CNNs) and expanded the width of the network to extract more deep features, thereby increasing the complexity of the model. To solve this problem, in this paper, we propose a lightweight convolutional neural network based on attention-oriented multi-branch feature fusion (AMB-CNN) for remote sensing image scene classification. Firstly, we propose two convolution combination modules for feature extraction, through which the deep features of images can be fully extracted with multi convolution cooperation. Then, the weights of the feature are calculated, and the extracted deep features are sent to the attention mechanism for further feature extraction. Next, all of the extracted features are fused by multiple branches. Finally, depth separable convolution and asymmetric convolution are implemented to greatly reduce the number of parameters. The experimental results show that, compared with some state-of-the-art methods, the proposed method still has a great advantage in classification accuracy with very few parameters.


Sign in / Sign up

Export Citation Format

Share Document