Effect of Temperature and Strain Rate of The Hot Deformation of V Microalloyed Steel on Flow Stress
Medium carbon micro-alloyed forging steels are employed in various automotive components. The impetus for the use of micro alloyed (MA) steels is cost reduction due to elimination of post-forging heat treatment. Compared to conventional quenched and tempered steels micro-alloyed steels can achieve similar or more superior properties simply by properly controlling the process parameters. Forging temperature, strain, strain rate and cooling rate are some of the important process parameters that influence the flow stress and final forging product quality. In the present study, hot compression test on a micro-alloyed steel grade 38MnSiVS5 were conducted on thermo-mechanical simulator (Gleeble-3500) to study the effect of temperature and strain rate on flow stress. The results indicate that the flow stress of 38MnSiVS5 steel is greatly affected by both deformation temperature and strain rate. Obtained true stress-true strain curves showed that the flow stress of the alloy increased by increasing the strain rate and decreasing the temperature, which can be represented in terms of an exponent type Zener-Hollomon equation. Finally, the constitutive equations for the flow behavior of 38MnSiVS5 microalloyed steel were determined.