scholarly journals Hot Deformation Behavior and Processing Map of High-Strength Nickel Brass

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 782 ◽  
Author(s):  
Qiang Liang ◽  
Xin Liu ◽  
Ping Li ◽  
Xianming Zhang

The flow behavior of a new kind of high-strength nickel brass used as automobile synchronizer rings was investigated by hot compression tests with a Gleeble-3500 isothermal simulator at strain rates ranging from 0.01 to 10 s−1 and a wide deformation temperature range of 873–1073K at intervals of 50 K. The experimental results show that flow stress increases with increasing strain rate and decreasing deformation temperature, and discontinuous yielding appeared in the flow stress curves at higher strain rates. A modified Arrhenius constitutive model considering the compensation of strain was established to describe the flow behavior of this alloy. A processing map was also constructed with strain of 0.3, 0.6, and 0.9 based on the obtained experimental flow stress–strain data. In addition, the optical microstructure evolution and its connection with the processing map of compressed specimens are discussed. The predominant deformation mechanism of Cu-Ni-Al brass is dynamic recovery when the deformation temperature is lower than 973 K and dynamic recrystallization when the deformation temperature is higher than 973 K according to optical observation. The processing map provides the optimal hot working temperature and strain rate, which is beneficial in choosing technical parameters for this high-strength alloy.

2017 ◽  
Vol 898 ◽  
pp. 137-143
Author(s):  
Lin Xiang ◽  
Bin Tang ◽  
Hong Chao Kou ◽  
Jie Shao ◽  
Jin Shan Li

Isothermal compression tests were conducted to investigate the effect of hot deformation parameters on flow behavior and microstructure of Ti-6Al-4V-0.2O alloy. The experimental results show that the strain rate and height reduction have little effect on the volume fraction of primary α at a deformation temperature of 860 ̊C. At a deformation temperature of 940 ̊C, the volume fraction of primary α at a high strain rate (10s-1) is about 10% less than that at low strain rates (0.01s-1~1s-1). It may be one of the reasons for the significantly discontinuous yielding phenomenon. Another reason is that the dislocation density decreased suddenly due to the dynamic recovery. With the increasing strain rate and the decreasing deformation temperature, the volume fraction of irregular secondary α increases and lamellar secondary α decreases. And with height reduction increasing, the irregular secondary α increases firstly and then tends to be steady because of dynamic recovery and recrystallization.


2018 ◽  
Vol 913 ◽  
pp. 63-68 ◽  
Author(s):  
Zhu Hua Yu ◽  
Da Tong Zhang ◽  
Wen Zhang ◽  
Cheng Qiu

Hot compression tests of homogenized 6063 Al alloy were carried out in the temperatures range from 390°C to 510°C and strain rates from 1s-1 to 20s-1 on a Gleeble-3500 thermal simulation machine. The results showed that the flow stress decreased with increasing deformation temperature or decreasing strain rate. The dynamic softening effect was more obvious when the alloy was deformed at strain rate of 20 s-1. The Arrhenius-type constitutive equation with strain compensation can accurately describe the flow stress of 6063 aluminum alloy during hot compression. Shear bands appeared in grains interior when the alloy deformed at high strain rates, corresponding to high Zenner-Hollomon (Z) parameters. When deformed under the conditions with low Z parameters, the dynamic recrystallization started occurred.


2011 ◽  
Vol 239-242 ◽  
pp. 2395-2398 ◽  
Author(s):  
Hui Zhong Li ◽  
Xiao Peng Liang ◽  
Min Song ◽  
Min Zeng

The flow behavior of a 7039 aluminum alloy and the corresponding microstructural evolution during hot deformation were studied by Gleeble-1500 thermal simulation tests, EBSD and TEM observations with temperatures ranging from 300 °C to 500 °C under strain rates from 0.01 s-1 to 10 s-1. It has been shown that the flow stress increases with the decrease in the deformation temperature and increase in the strain rate. The degree of dynamic recrystallization (DRX) increases with the increase in the deformation temperature and strain rate in 7039 aluminum alloy. The complete dynamic recrystallization occurs at 500 °C with a strain rate of 10 s-1.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 844 ◽  
Author(s):  
Wang ◽  
Shen ◽  
Zhang ◽  
Ning

The hot deformation behavior of the aerospace Ti-10-2-3 alloy was investigated by isothermal compression tests at temperatures of 740 to 820 °C and strain rates of 0.0005 to 10 s−1. The results show that the studied alloy is extremely sensitive to deformation parameters, like the temperature and strain rate. The temperature mainly affects the magnitude of flow stress at larger strains, while the strain rate not only affects the value of flow stress but also the shape of the flow curves. At low strain rates, the flow stress increases with strain, followed by a broad peak and then remains almost constant. At high strain rates, the flow curves exhibit a hardening to a sharp peak at small strains, followed by a rapid dropping to a plateau caused by dynamic softening. In order to describe such flow behavior, a constitutive model considering the effect of deformation parameters was developed as an extension of an existing constitutive model. The modified constitutive model (MC) was obtained based on the original constitutive model (OC) by introducing a new parameter to compensate for the error between the experimental data and predicted values. Compared to the original model, the developed model provides a better description of the flow behavior of Ti-10-2-3 alloy at elevated temperatures over the specified deformation domain.


2014 ◽  
Vol 651-653 ◽  
pp. 38-41
Author(s):  
Ling Zhan Zhou ◽  
Li Ming Yang ◽  
Yin Jiang Peng ◽  
Xiu Rong Zhu

Fe-Cr-Ni preform reinforcing aluminum composite was produced by squeeze casting. And then, T6 heat treatment was conducted to enhance the composite’s performance. After which, isothermal compression tests in temperature range of 298 - 473 K at an strain rate range from 0.001 to 10 s-1 were carried out on Gleeble 3500 thermo-mechanical simulation machine. It is found that, for a specific strain rate, the flow stress decreases markedly with temperature increases. And for a fixed temperature, the flow stress generally increases as the strain rate increases. Based on the experimental true stress-true strain data, the Arrhenius type model was established.


2021 ◽  
Vol 30 (1) ◽  
pp. 110-117
Author(s):  
Kenneth Kanayo Alaneme ◽  
Saheed Adeoye Babalola ◽  
Lesley Heath Chown ◽  
Nthabiseng Beauty Maledi ◽  
Michael Oluwatosin Bodunrin

Abstract Investigation on the hot deformability and workability of stir cast 6 wt.% steel particles reinforced aluminium 6063 matrix composites was undertaken in this study. Flow stress – strain curves generated from hot compression tests performed at strain rates of 0.01, 0.1, 1, and 10 s−1, and temperatures between 200–400°C, were used to study the flow behavior of the composite, while processing map developed from analyses of the deformation data, was used to establish the deformation mechanisms and processing safe zones for effective workability. Flow stress oscillations were observed to be prevalent at lower deformation temperatures and strain rates; largely due to the settling of reinforcement particles at grain boundary vicinities, rather than a homogeneous distribution. Also, the flow behaviour was largely strain rate insensitive. The dominant flow mechanism based on the flow stress patterns, processing map and microstructural validation was established to be dynamic recovery. Safe regions for processing based on Murty's and Gegel's criteria established the safe processing zones to be ~270–400°C at 0.01–1.0 s−1 and 380–400°C at 10 s−1. Deformation processing was unsafe at 200–260°C at 0.01–1.0 s−1 and between 200–380°C at 1.0–10 s−1.


Author(s):  
Shibo Wen ◽  
Chaoyu Han ◽  
Bao Zhang ◽  
Yongfeng Liang ◽  
Feng Ye ◽  
...  

The flow behavior of Fe-6.5wt.%Si alloys during hot compression was investigated at temperatures 650–950 °C and strain rates 0.01–10 s-1. The results showed that the flow stress depended distinctly on the deformation temperatures and strain rates. The flow stress and work hardening rate increased with the decrease of temperature and the increase of strain rate. The activation energy under all the deformation conditions was calculated to be 410 kJ/mol. The constitutive equation with hyperbolic sine function and Zener–Hollomon parameter was developed. The peak stress, critical stress, and steady-state stress could be represented as σ=A+Bln(Z/A). Dynamic recrystallization occurred under the deformation conditions where the values of Z were lower than 1020. Processing maps were established to optimize the processing parameters. The power dissipation efficiency decreased in the high temperature and low strain rate region, increased in the high temperature and high strain rate region, and remained unchanged in other regions with the increase of true strain. Furthermore, the unstable area expanded. The true strain of 0.7 was the optimum reduction according to the processing map. Based on the analysis of surface quality, microstructures, and ordered structures, the optimized processing parameters for the Fe-6.5wt.%Si alloys were the temperature and strain rate of higher than 900 °C and 0.01–10 s-1, respectively, or 800–900 °C and lower than 0.4 s-1, respectively.


Author(s):  
Amir Hosein Sheikhali ◽  
Maryam Morakkabati

Abstract In this study, hot deformation behavior of SP-700 titanium alloy was investigated by hot compression tests in the temperature range of 700-9508C and at strain rates of 0.001, 0.1, and 1 s-1. Final mechanical properties of the alloy (hot compressed at different strain rates and temperatures) were investigated using a shear punch testing method at room temperature. The flow curves of the alloy indicated that the yield point phenomenon occurs in the temperature range of 800- 9508C and strain rates of 0.1 and 1 s-1. The microstructural analysis showed that dynamic globularization of the lamellar α phase starts at 7008C and completes at 8008C. The alpha phase was completely eliminated from b matrix due to deformation- induced transformation at 8508C. The microstructure of specimens compressed at 8508C and strain rates of 0.001 and 0.1 s-1showed the serration of beta grain boundaries, whereas partial dynamic recrystallization caused a necklace structure by increasing strain rate up to 1 s-1. The specimen deformed at 7008C and strain rate of 1 s-1was located in the instability region and localized shear bands formed due to the low thermal conductivity of the alloy. The processing map of the alloy exhibited a peak efficiency domain of 54% in the temperature range of 780-8108C and strain rates of 0.001- 0.008 s-1. The hot deformation activation energy of the alloy in the α/β region (305.5 kJ mol-1) was higher than that in the single-phase β region (165.2 kJ mol-1) due to the dynamic globularization of the lamellar a phase.


2018 ◽  
Vol 913 ◽  
pp. 30-36
Author(s):  
Ran Liu ◽  
Hui Huang ◽  
Ya Liu ◽  
Li Rong

To study the hot deformation behavior of Al-Mg-Er alloy, hot compression tests were conducted on a Gleeble-1500D thermal simulator at the temperature range of 200-500°C with the strain rates from 0.001 to 10s-1. With the increase in the deformation temperature and the decrease in strain rates, the flow stress of the Al-Mg-Er alloy decreased. Processing maps were constructed to study on hot workability characteristics. The results showed that the flow stress curves exhibited the typical dynamic recrystallization characteristics and the stress decreased with the increase of deformation temperature and the decrease of strain rate. Moreover, the processing maps were established on the basis of dynamic material model and Prasad’s instability criterion.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2098 ◽  
Author(s):  
Olga Yakovtseva ◽  
Maria Sitkina ◽  
Ahmed O. Mosleh ◽  
Anastasia Mikhaylovskaya

Increasing the strain rate at superplastic forming is a challenging technical and economic task of aluminum forming manufacturing. New aluminum sheets exhibiting high strain rate superplasticity at strain rates above 0.01 s−1 are required. This study describes the microstructure and the superplasticity properties of a new high-strength Al-Zn-Mg-based alloy processed by a simple thermomechanical treatment including hot and cold rolling. The new alloy contains Ni to form Al3Ni coarse particles and minor additions of Zr (0.19 wt.%) and Sc (0.06 wt.%) to form nanoprecipitates of the L12-Al3 (Sc,Zr) phase. The design of chemical and phase compositions of the alloy provides superplasticity with an elongation of 600–800% in a strain rate range of 0.01 to 0.6/s and residual cavitation less than 2%. A mean elongation-to-failure of 400% is observed at an extremely high constant strain rate of 1 s−1. The strain-induced evolution of the grain and dislocation structures as well as the L12 precipitates at superplastic deformation is studied. The dynamic recrystallization at superplastic deformation is confirmed. The superplastic flow behavior of the proposed alloy is modeled via a mathematical Arrhenius-type constitutive model and an artificial neural network model. Both models exhibit good predictability at low and high strain rates of superplastic deformation.


Sign in / Sign up

Export Citation Format

Share Document