scholarly journals Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source:sink modifications under postanthesis water and nitrogen deficiency

2010 ◽  
Vol 32 (1) ◽  
Author(s):  
Ahad Madani ◽  
Amirhossein Shirani Rad ◽  
Alireza Pazoki ◽  
Ghorban Nourmohammadi ◽  
Reza Zarghami
Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Witold Grzebisz ◽  
Jarosław Potarzycki

The application of magnesium significantly affects the components of the wheat yield and the dry matter partitioning in the grain-filling period (GFP). This hypothesis was tested in 2013, 2014, and 2015. A two-factorial experiment with three rates of magnesium (0, 25, 50 kg ha−1) and four stages of Mg foliar fertilization (without, BBCH 30, 49/50, two-stage) was carried out. Plant material collected at BBCH: 58, 79, 89 was divided into leaves, stems, ears, chaff, and grain. The wheat yield increased by 0.5 and 0.7 t ha−1 in response to the soil and foliar Mg application. The interaction of both systems gave + 0.9 t ha−1. The Mg application affected the grain yield by increasing grain density (GD), wheat biomass at the onset of wheat flowering, durability of leaves in GFP, and share of remobilized dry matter (REQ) in the grain yield. The current photosynthesis accounted for 66% and the REQ for 34%. The soil-applied Mg increased the REQ share in the grain yield to over 50% in 2014 and 2015. The highest yield is possible, but provided a sufficiently high GD, and a balanced share of both assimilate sources in the grain yield during the maturation phase of wheat growth.


1983 ◽  
Vol 63 (1) ◽  
pp. 73-90 ◽  
Author(s):  
C. A. CAMPBELL ◽  
H. R. DAVIDSON ◽  
T. N. McCAIG

Manitou spring wheat (Triticum aestivum L.) was grown at combinations of three different day/night temperatures (27/12 °C, 22/12 °C and 17/12 °C), three levels of fertilizer N (58, 116 and 174 kg N/ha), and three moisture stresses (nominally −0.03, −1.5 and −4.0 MPa) applied for four durations (viz., no stress throughout, stress from (i) four-tiller (Tg), (ii) boot (Bt), or (iii) flowering (Fl) stages to harvest (Hvst)). Plant and soil samples were analyzed at eight growth stages. Plants grown at 22/12 °C or 17/12 °C and given 116 or 174 kg N/ha lost some N between heading and flowering. Plant N content (dry weight × % N) was depressed by moisture stress in proportion to the duration of the stress even though N concentration was increased. Plant N content was not greatly affected by temperature due to the compensating effects of temperature on dry matter and N concentration. N content of heads was depressed most by moisture stress applied from the Bt stage. Between Fl and Hvst the roots, leaves and stems lost an average 27, 39 and 63% of their N content, respectively. Stems could have contributed a maximum of about 30%, roots 14%, leaves 10% and chaff 7% of the grain N content at Hvst; thus, almost 40% of the grain’s N was taken up during grain filling. An average 75% of the aboveground plant N was located in the grain. At 27/12 °C nonstructural carbohydrate (NSC) concentration in stems reached a maximum at Fl compared to dough stage at 22/12 °C, but it decreased rapidly thereafter. In contrast to N concentration, NSC concentration in stems was lowest at 27/12 °C; also, moisture stress from Bt or Tg stages decreased NSC concentration. Like N content, NSC content was reduced in proportion to the duration of moisture stress. High temperature, N fertilizer, and moisture stress from Tg or Bt stages (conditions favoring high grain protein) increased the proportion of the vegetative organs’ weight loss, between Fl and Hvst, that was N-linked. The amount of NSC-associated dry matter lost from stems during grain filling was generally greater for late or low moisture stressed plants, for plants grown under cooler conditions, and for plants grown at higher N rates (conditions favoring greater grain yields). Of the moisture treatments, stress applied from Fl increased NSC-associated dry matter lost from stems the most, probably suggesting that assimilate translocation was used by the plant to compensate for reduced flag-leaf-produced photosynthate. Respiration losses associated with NSC translocation from stems to heads was greater at 22/12° than at 17/12 °C; there was little NSC translocation apparent at T27/12 °C.Key words: Plant nitrogen, soluble sugars, nitrogen effect, temperature effect, moisture stress effect, spring wheat (Triticum aestivum L.)


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


Author(s):  
Bhupesh Kumar Mishra Santosh Pandey ◽  
Arvind Kumar Ramesh Kumar

An experiment has been conducted to assess the real time utility and abundance of organic minerals in cultivation of common wheat, Triticum aestivum L. in Bundelkhand region of Uttar Pradesh with the aim of finding the effect of available soil organic minerals on various biochemicals or chemical characters including yield attributes. For the experiment, the cultivar namely RAJ-4037 which is best for dry land area and crop matures in 120 days. This variety is suitable for bakery and beverage industry, has been taken. The pre availability of manures were measured and the application of various fertilizers have been done as per the recommended dose for the cultivation. The data of various biochemical characters like Dry matter accumulation, Protein content, NPK in grain, NPK in straw, yield and biological yields have been recorded as per standard methods. The results revealed that organic minerals had a significant impact to influence the various biochemical traits such as dry matter accumulation maximum in FYM, Protein content (11.18), NPK (0.60; 0.35 and 0.36) were recorded maximum in vermin compost treatment.


Sign in / Sign up

Export Citation Format

Share Document