scholarly journals Formulation of fish waste meal for human nutrition

2017 ◽  
Vol 39 (5) ◽  
pp. 525 ◽  
Author(s):  
Maria Luiza Rodrigues de Souza ◽  
Grazyella Massako Yoshida ◽  
Daniel Abreu Vasconcelos Campelo ◽  
Lorena Batista Moura ◽  
Tadeu Orlandi Xavier ◽  
...  

 This study aimed to elaborate and characterize meals containing waste from processing of tilapia, tuna, salmon and sardine for human consumption. Carcasses of tilapia and salmon, tuna torsos without fins and sardine tails were cooked, pressed, milled and dehydrated, resulting in waste meal. Greater protein (83.28%) and lower mineral matter (5.31%) were observed in tuna meal. Salmon meal presented greater content of lipids (18.81%) and sardine meal, lower content (3.98%). Tilapia meal presented greater mineral matter (37.66%), calcium (9.37%) and phosphorus (6.08%). Higher content of iron was observed in sardine and tuna meals. Higher amounts of fatty acids from n-3 series were found in salmon (53.71 g kg-1), sardine (47.46 g kg-1) and tuna (36.98 g kg-1). Concerning amino acids, glutamic acid showed greater proportion in all meals, followed by lysine, leucine, glycine and aspartic acid. All meals presented high biological and nutritional values and are regarded as important sources of calcium, phosphorus and iron. 

1966 ◽  
Vol 101 (3) ◽  
pp. 591-597 ◽  
Author(s):  
R M O'Neal ◽  
R E Koeppe ◽  
E I Williams

1. Free glutamic acid, aspartic acid, glutamic acid from glutamine and, in some instances, the glutamic acid from glutathione and the aspartic acid from N-acetyl-aspartic acid were isolated from the brains of sheep and assayed for radioactivity after intravenous injection of [2-(14)C]glucose, [1-(14)C]acetate, [1-(14)C]butyrate or [2-(14)C]propionate. These brain components were also isolated and analysed from rats that had been given [2-(14)C]propionate. The results indicate that, as in rat brain, glucose is by far the best precursor of the free amino acids of sheep brain. 2. Degradation of the glutamate of brain yielded labelling patterns consistent with the proposal that the major route of pyruvate metabolism in brain is via acetyl-CoA, and that the short-chain fatty acids enter the brain without prior metabolism by other tissue and are metabolized in brain via the tricarboxylic acid cycle. 3. When labelled glucose was used as a precursor, glutamate always had a higher specific activity than glutamine; when labelled fatty acids were used, the reverse was true. These findings add support and complexity to the concept of the metabolic; compartmentation' of the free amino acids of brain. 4. The results from experiments with labelled propionate strongly suggest that brain metabolizes propionate via succinate and that this metabolic route may be a limited but important source of dicarboxylic acids in the brain.


2021 ◽  
pp. 7-14
Author(s):  
Theresah Nkrumah ◽  
Worlah Yawo Akwetey

The main tissue of meat is the muscle and it is a very rich source of amino acids (aspartic acid, glutamic acid, histidine, arginine, valine, methionine, isoleucine, phenylalanine, threonine, and leucine) and some minerals like magnesium, calcium, phosphorus, sodium and potassium. In this study, essential amino acid profile in fresh catfish, mackerel, pork and their processed products were determined using High Performance Liquid Chromatography (HPLC). Minerals were determined in the form of cation (magnesium, calcium, potassium, ammonium and sodium) and anion (fluorine, chlorine, Nitrate, Sulphate and phosphate) by Cadmium.mtw and ASUP5 – 100 marvin.mtw respectively. The most abundant amino acids determined were aspartic acid, glutamic acid, arginine, methionine and threonine which were found in catfish, mackerel and pork. Values observed were higher (p<0.05) in catfish and mackerel than pork. Fresh catfish and mackerel recorded higher values in most of the amino acids in both raw product and their frankfurters (CF and MF) than fresh pork. Sulphate values were also higher (p<0.05) in raw meat than their frankfurters. Higher level of calcium, magnesium, potassium, and sodium were observed in processed pork frankfurter than fresh pork. Minerals such as calcium and sodium were present but are at a smaller quantity in meat.


Author(s):  
Sihono Sihono ◽  
Bagus Sediadi Bandol Utomo ◽  
Nurhayati Nurhayati

Two species of Caulerpa, locally known as “Pedesan” and “Latuh” have been traditionally consumed by coastal communities at Binuangeun, Banten. This study aimed to identify “Pedesan” and “Latuh” using the DNA barcoding method and to evaluate their nutrient and heavy metal contents. Fatty acids were determined by Gas Chromatography Flame Ionization Detector (GC FID), amino acids using Ultra Performance Liquid Chromatography (UPLC), and minerals using Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES). Based on the tufA gene sequences, the “Pedesan” was identified as Caulerpa racemosa var. macrophysa and “Latuh” as Caulerpa chemnitzia. Thirteen fatty acids were detected in C. racemosa var. macrophysa and twelve fatty acids in C. chemnitzia. Of the total fatty acid content, C. racemosa var. macrophysa contained 41.0% unsaturated fatty acids, dominated by linolenic acid and eicosapentaenoic acid. Meanwhile, C. chemnitzia contained 47.5%, dominated by oleic acid. Both seaweeds contained fatty acids with the w6/w3 ratio lower than 10, which could prevent heart disease risk based on World Health Organization (WHO) recommendation. The primary amino acids content in C. racemosa var. macrophysa were glutamic acid, alanine, serine and aspartic acid, while those in C. chemnitzia were glutamic acid, serine, aspartic acid, and glycine. The high content of glutamic acid in both samples indicated their potential use as food flavor enhancer. The Na/K ratio of C. racemosa var. macrophysa (40.31) and C. chemnitzia (27.48) were higher than those recommended by WHO. Heavy metals were not detected in either “Pedesan” nor “Latuh”, indicating that they are safe for consumption.


1964 ◽  
Vol 42 (1) ◽  
pp. 139-142 ◽  
Author(s):  
S. J. Patrick ◽  
L. C. Stewart

The effects of hypoglycin A on the metabolism of L-leucine-C14, L-alanine-C14, and L-glutamic-acid-C14 by rat liver slices have been investigated. Hypoglycin exerted markedly inhibitory effects on the conversion of leucine-C14 to fatty acid, cholesterol, and CO2. Conversion of alanine-C14 and glutamic acid-C14 to fatty acids was also inhibited by hypoglycin. No effects of hypoglycin on the conversion of C14-amino acids into protein or glycogen were demonstrated.


1979 ◽  
Vol 6 (2) ◽  
pp. 88-92 ◽  
Author(s):  
Allan R. Hovis ◽  
Clyde T. Young ◽  
Cedric W. Kuhn

Abstract Peanut (Arachis hypogaea L.) cultivars (Starr and Florunner) and four peanut introductions (PI 261945, 261946, 261973, and 261980) were each separately inoculated with a mild strain (M2) and with the necrosis strain (N) of peanut mottle virus. The effects of these viral strains on the chemical composition of peanut seed were evaluated. The chemical characteristics varied with the type of viral infection. The greatest effect was on fatty acids and the least on the total amino acids. In general, peanuts infected with the necrosis strain showed: (1) a decrease in the percentages of stearic and oleic acids, while linoleic, arachidic, behenic, and lignoceric acids increased, (2) increases in the levels of the free amino acids glycine, alanine, isoleucine, histidine, lysine, and arginine, and (3) the total amino acids exhibited a slight decrease in aspartic acid and a slight increase in methionine. Peanuts infected with the mild strain generallly showed: (1) a slight increase in linoleic acid, (2) little effect on the free amino acids, and (3) a small increase in tyrosine and a slight decrease in serine and aspartic acid for the total amino acids. No treatment effect was noted on protein content.


2013 ◽  
Vol 14 (1) ◽  
pp. 105
Author(s):  
T. Georgieva ◽  
P. Zorovski

The purpose of this survey is to study the content of non-essential amino acids in four winter (Dunav 1, Ruse 8, Resor 1, Line M-K) and five spring (Obraztsov chiflik 4, Mina, HiFi, Novosadski golozarnest and Prista 2) cultivars of oats grown in Central Southern Bulgaria within the period from 2007 to 2009. The tested cultivars have different contents of non-essential amino acids. Dunav 1 has the highest quantity of glicine (5.12 g/100 g protein) of all the winter cultivars, Ruse 8 has the highest quantity of alanine (5.69 g/100 g protein) and Resor 1 – the highest quantity of arginine (6.14 g/100 g protein). Generally speaking, the spring cultivars have a larger quantity of glutamic acid (from 25.86 to 26.07 g/100 g protein) and proline (from 6.15 to 8.21 g/100 g protein) but a smaller quantity of glycine (from 4.68 to 4.99 g/100 g protein) compared to the winter cultivars. The naked cultivar Mina has the highest quantity of cystine (2.14 g/100 g protein), cultivar Prista 2 has the highest quantity of proline (8.21 g/100 g protein) and glutamic acid (26.07 g/100g protein) and HiFi ranks first in terms of aspartic acid (9.05 g/100 g protein), serine (5.02 g/100 g protein) and tyrosine (2.09 g/100 g protein). In the study we have also established certain relations between non-essential amino acids.


1960 ◽  
Vol 38 (11) ◽  
pp. 1229-1234 ◽  
Author(s):  
R. Kasting ◽  
A. J. McGinnis

The production of C14O2 by third-instar larvae of the blow fly, Phormia regina Meig., after it was injected with glutamic acid-U-C14, indicates that this substrate was metabolized under these conditions. However, the nutritionally essential amino acids lysine, phenylalanine, valine, isoleucine, leucine, and threonine, isolated from the injected larvae, contained little radioactivity. A low level of radioactivity in arginine, histidine, and methionine suggests that they were slowly synthesized. The nutritionally non-essential amino acids alanine, serine, aspartic acid, and proline contained large quantities of radioactivity; tyrosine and glycine were exceptions. These results, in agreement with earlier work that used glucose-U-C14, show that radioactivity data are useful for determining certain of the nutritionally essential amino acids.


1967 ◽  
Vol 105 (1) ◽  
pp. 299-310 ◽  
Author(s):  
H. J. Somerville ◽  
J. L. Peel

Peptostreptococcus elsdenii, a strict anaerobe from the rumen, was grown on a medium containing yeast extract and [1−14C]- or [2−14C]-lactate. Radioisotope from lactate was found in all cell fractions, but mainly in the protein. The label in the protein fraction was largely confined to a few amino acids: alanine, serine, aspartic acid, glutamic acid and diaminopimelic acid. The alanine, serine, aspartic acid and glutamic acid were separated, purified and degraded to establish the distribution of 14C from lactate within the amino acid molecules. The labelling patterns in alanine and serine suggested their formation from lactate without cleavage of the carbon chain. The pattern in aspartic acid suggested formation by condensation of a C3 unit derived directly from lactate with a C1 unit, probably carbon dioxide. The distribution in glutamic acid was consistent with two possible pathways of formation: (a) by the reactions of the tricarboxylic acid cycle leading from oxaloacetate to 2-oxoglutarate, followed by transamination; (b) by a pathway involving the reaction sequence 2 acetyl-CoA→crotonyl-CoA→glutaconate→glutamate.


Analyses of the alimentary contents flowing to the duodenum of sheep during 24 h show that when the sheep are consuming a low-nitrogen diet more total nitrogen and amino nitrogen pass to the duodenum than are eaten daily in the food whereas when the sheep are eating high nitrogen diets, less total nitrogen and less amino nitrogen pass to the duodenum. The disparity between the total nitrogen and amino nitrogen content of the diets largely disappeared by the time the alimentary contents reached the terminal part of the ileum. From 64 to 68% of the nitrogen entering the duodenum and 54 to 64% of the nitrogen in the ileal contents was in the form of amino nitrogen. Proportionately more of the amino nitrogen was in solution in the ileal contents than in the duodenal contents. Losses of amino acids in the stomach when a high-nitrogen diet was consumed were especially large for glutamic acid, aspartic acid, proline, arginine and leucine. They were least for cystine and threonine. Gains of amino acids in the stomach when low nitrogen diets were consumed were all substantial except for proline, where a loss was found when hay and flaked maize were given. When these changes are considered as proportions of the quantities eaten then trends are similar for all acids. Changes in the molar proportions of the amino acids present in hydrolysates of the duodenal and ileal contents are discussed together with the significance of these changes in relation to the nutrition of the sheep.


Sign in / Sign up

Export Citation Format

Share Document