scholarly journals Technical analysis of an oven with coupled receiver for scheffler solar concentrator tested under cloudy weather conditions

2020 ◽  
Vol 42 ◽  
pp. e44444
Author(s):  
Erick Alfred Dib ◽  
Luanda Gimeno Marques ◽  
Renan Tavares Figueiredo ◽  
Flávio Augusto Sanzovo Fiorelli

Most of the solar collectors experiments are carried out under clear-sky conditions to evaluate the maximum performance of collectors, even though this condition is not critical for some uses, such as cooking. The optical and thermal performance of a solar oven heated by Scheffler concentrator is here analyzed in more adverse weather conditions. The receiver for conversion and heat transfer of the concentrated solar energy is coupled to an oven specially developed for this work. The Scheffler concentrator geometry is a lateral cut angled 43.23° of a paraboloid matrix, and it works in a two-axis tracking system, to always maintain its focal image at the stationary receiver with the progression of the Earth rotation and solar declination movements. A model for distributing the daily radiation over the hours is used to compare the results. The time-constant experimental method is considered. The heating and cooling tests were carried out at the official local time. The maximum temperature achieved by the absorber was 328°C, and the maximum average temperature in the oven was 150°C. The results for heat loss factor were evaluated, and the trends for thermal efficiency and optical efficiency factor were analyzed for the system considered

Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 223-223 ◽  
Author(s):  
P. Tsopelas ◽  
E. J. Paplomatas ◽  
S. E. Tjamos ◽  
N. Soulioti ◽  
K. Elena

In April 2010, during a survey conducted in Fthiotis Prefecture of central Greece, symptoms of stem necrosis and leaf lesions were observed on two container-grown plants of Rhododendron, hybrid ‘Kate Waterer' in a nursery. From symptomatic leaves, a Phytophthora species was isolated on PARPH-V8 selective agar medium (2) with typical morphological characters of Phytophthora ramorum S. Werres & A.W.A.M. de Cock (4). The whole block of plants was under probation until molecular verification of the pathogen was completed. The nursery was reexamined 6 weeks after the first encounter, whereas spread of the pathogen was noticed to neighboring plants in the same block; five more Rhododendron plants with similar symptoms were recorded while one of the originally infected plants was dead. Isolates of Phytophthora with similar morphology were obtained from symptomatic leaves of three new plants as well as from the potting mix of a severely infected plant that was baited in a Rhododendron leaf assay (2). All Rhododendron plants in the block belonged to the same consignment imported from Belgium and covered by a phytosanitary plant passport. Colonies on 10% clarified V8 juice agar appeared with coralloid, coenocytic mycelium with radial growth at 1.7 mm per day at 20°C and maximum temperature 26 to 27°C. Propagules characteristic of P. ramorum, including semipapillate, caducous, sporangia measuring 35 to 55 × 15 to 30 μm (1.9 length/width ratio) and large chlamydospores (45 to 80 μm), were observed on V8 agar. One isolate was confirmed as P. ramorum by sequence analysis of the internal transcribed spacer region of rDNA and was deposited in the culture collection of the University of Athens (ATHUM 6522). Comparison of amplicon sequences (using ITS4/5 primer pair) of approximately 875 bp long was carried out using MEGABLAST search for highly similar sequences. Alignment data revealed the highest and most significant homology to P. ramorum (GenBank Accession No. AY594198.1) at 99%. Pathogenicity tests were carried out using detached leaves of Rhododendron hybrid ‘Red Jack’ and Arbutus unedo L., which were slightly wounded and inoculated with mycelium agar plugs (3). Necrotic lesions appeared on the inoculated leaves of both plant species 10 days after incubation at 20°C, while no symptoms developed on control leaves inoculated with sterile agar plugs. P. ramorum was consistently reisolated from artificially infected leaves of both plant species. Following confirmation of pathogen presence, eradication measures were applied in the nursery. The adverse weather conditions encountered in summer, with temperatures very often above 35°C, are expected to favor pathogen eradication. However, not all plants of the same consignment imported from Belgium were traced and it is possible that other infected plants have been sold in other areas of Greece. So far, P. ramorum had been reported in 21 other European countries; Serbia is the nearest country where the pathogen was detected (1). To our knowledge, this is the first report of P. ramorum in Greece. References: (1) A. Bulajić et al. Plant Dis. 94:703, 2010. (2) E. J. Fichtner et al. Phytopathology 97:1366, 2007. (3) R. G. Linderman et al Online publication. doi:10.1094/PHP-2007-0917-01-RS. Plant Health Progress, 2007. (4) S. Werres et al. Mycol. Res. 105:1155, 2001.


Climate ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 125
Author(s):  
Serena Summa ◽  
Luca Tarabelli ◽  
Giulia Ulpiani ◽  
Costanzo Di Perna

Climate change is posing a variety of challenges in the built realm. Among them is the change in future energy consumption and the potential decay of current energy efficient paradigms. Indeed, today’s near-zero Energy buildings (nZEBs) may lose their virtuosity in the near future. The objective of this study is to propose a methodology to evaluate the change in yearly performance between the present situation and future scenarios. Hourly dynamic simulations are performed on a residential nZEB located in Rome, built in compliance with the Italian legislation. We compare the current energy consumption with that expected in 2050, according to the two future projections described in the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). Implications for thermal comfort are further investigated by assuming no heating and cooling system, and by tracking the free-floating operative temperature. Compared to the current weather conditions, the results reveal an average temperature increase of 3.4 °C and 3.9 °C under RCP4.5 and RCP8.5 scenarios, estimated through ERA-Interim/UrbClim. This comes at the expense of a 47.8% and 50.3% increase in terms of cooling energy needs, and a 129.5% and 185.8% decrease in terms of heating needs. The annual power consumption experiences an 18% increase under both scenarios due to (i) protracted activation of the air conditioning system and (ii) enhanced peak power requirements. A 6.2% and 5.1% decrease in the hours of adaptive comfort is determined under the RCP4.5 and RCP8.5′s 2050 scenarios out of the concerted action of temperature and solar gains. The results for a newly proposed combined index for long-term comfort assessments reveal a milder future penalty, owing to less pronounced excursions and milder daily temperature swings.


2021 ◽  
Vol 11 (11) ◽  
pp. 4757
Author(s):  
Aleksandra Bączkiewicz ◽  
Jarosław Wątróbski ◽  
Wojciech Sałabun ◽  
Joanna Kołodziejczyk

Artificial Neural Networks (ANNs) have proven to be a powerful tool for solving a wide variety of real-life problems. The possibility of using them for forecasting phenomena occurring in nature, especially weather indicators, has been widely discussed. However, the various areas of the world differ in terms of their difficulty and ability in preparing accurate weather forecasts. Poland lies in a zone with a moderate transition climate, which is characterized by seasonality and the inflow of many types of air masses from different directions, which, combined with the compound terrain, causes climate variability and makes it difficult to accurately predict the weather. For this reason, it is necessary to adapt the model to the prediction of weather conditions and verify its effectiveness on real data. The principal aim of this study is to present the use of a regressive model based on a unidirectional multilayer neural network, also called a Multilayer Perceptron (MLP), to predict selected weather indicators for the city of Szczecin in Poland. The forecast of the model we implemented was effective in determining the daily parameters at 96% compliance with the actual measurements for the prediction of the minimum and maximum temperature for the next day and 83.27% for the prediction of atmospheric pressure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John S. McCloy ◽  
José Marcial ◽  
Jack S. Clarke ◽  
Mostafa Ahmadzadeh ◽  
John A. Wolff ◽  
...  

AbstractEuropean Bronze and Iron Age vitrified hillforts have been known since the 1700s, but archaeological interpretations regarding their function and use are still debated. We carried out a series of experiments to constrain conditions that led to the vitrification of the inner wall rocks in the hillfort at Broborg, Sweden. Potential source rocks were collected locally and heat treated in the laboratory, varying maximum temperature, cooling rate, and starting particle size. Crystalline and amorphous phases were quantified using X-ray diffraction both in situ, during heating and cooling, and ex situ, after heating and quenching. Textures, phases, and glass compositions obtained were compared with those for rock samples from the vitrified part of the wall, as well as with equilibrium crystallization calculations. ‘Dark glass’ and its associated minerals formed from amphibolite or dolerite rocks melted at 1000–1200 °C under reducing atmosphere then slow cooled. ‘Clear glass’ formed from non-equilibrium partial melting of feldspar in granitoid rocks. This study aids archaeological forensic investigation of vitrified hillforts and interpretation of source rock material by mapping mineralogical changes and glass production under various heating conditions.


2021 ◽  
Vol 2 (1) ◽  
pp. 46-62
Author(s):  
Santiago Iglesias-Baniela ◽  
Juan Vinagre-Ríos ◽  
José M. Pérez-Canosa

It is a well-known fact that the 1989 Exxon Valdez disaster caused the escort towing of laden tankers in many coastal areas of the world to become compulsory. In order to implement a new type of escort towing, specially designed to be employed in very adverse weather conditions, considerable changes in the hull form of escort tugs had to be made to improve their stability and performance. Since traditional winch and ropes technologies were only effective in calm waters, tugs had to be fitted with new devices. These improvements allowed the remodeled tugs to counterbalance the strong forces generated by the maneuvers in open waters. The aim of this paper is to perform a comprehensive literature review of the new high-performance automatic dynamic winches. Furthermore, a thorough analysis of the best available technologies regarding towline, essential to properly exploit the new winches, will be carried out. Through this review, the way in which the escort towing industry has faced this technological challenge is shown.


Sign in / Sign up

Export Citation Format

Share Document