The Evaluation of Fretting Fatigue Behavior in Room Temperature for INCOLOY Alloy 800

Author(s):  
Dae Kyu Park ◽  
Seung Wan Woo ◽  
Yong Tak Bae ◽  
Il Sup Chung ◽  
Young Suck Chai ◽  
...  
2007 ◽  
Vol 353-358 ◽  
pp. 89-93 ◽  
Author(s):  
Dae Kyu Park ◽  
Seung Wan Woo ◽  
Yong Tak Bae ◽  
Il Sup Chung ◽  
Young Suck Chai ◽  
...  

Mechanical breakdown often comes from the fatigue in many structural parts and nuclear power plants. Among the fatigue phenomenon, especially fretting fatigue occurs in mechanical joints showing small relative movements between contact surfaces. Although the research was developed for one hundred years, occurrence mechanism is not clearly identified yet. INCOLOY alloy 800 is a iron-nickel-chromium alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the nuclear power plants industry, the chemical industry, the heat-treating industry and the electronic industry. In this paper, the effect of fretting damage on fatigue behavior for INCOLOY alloy 800 was studied. Also, various kinds of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 50% compared to the plain fatigue strength. In fretting fatigue, the oblique micro-cracks at an earlier stage are initiated. These results can be used as basic data in a structural integrity evaluation of heat and corrosion resisting alloy considering fretting damages.


2007 ◽  
Vol 345-346 ◽  
pp. 243-246 ◽  
Author(s):  
Dae Kyu Park ◽  
Seung Wan Woo ◽  
Il Sup Chung ◽  
Young Suck Chai ◽  
Jae Do Kwon

Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. INCONEL alloy 600, 690 and INCOLOY alloy 800 are iron-nickel-chromium alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. These alloy are used extensively in the nuclear power plants industry, the chemical industry, the heat-treating industry and the electronic industry. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 600, 690 and INCOLOY alloy 800 were studied. Also, various kinds of mechanical tests such as tension and plain fatigue tests are performed. The objective of this study is to guarantee reliability of the facility applied in a power plant by comparing three materials in respect to fretting fatigue.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744020 ◽  
Author(s):  
J. F. Peng ◽  
X. Jin ◽  
Z. B. Xu ◽  
Z. B. Cai ◽  
X. Y. Zhang ◽  
...  

Bending fretting fatigue behavior of 17CrNiMo6 alloy structural steel at room temperature was investigated under different bending and contact loads; and the [Formula: see text]–[Formula: see text] curve also was built up. The results showed that the [Formula: see text]–[Formula: see text] curve had a “C” shape. The bending fretting fatigue life was mainly dependent on the bending fatigue stress and fretting displacement. The limit of the specimens and the fretting fatigue life were dramatically decreased by fretting actions. The bending fretting fatigue damage changed under varied bending fatigue stress levels. When the wear first occurred, there is a lower bending fatigue stress; and with a higher bending fatigue load, microcracks were generated. However, some serious wear and surface delamination were observed under the highest fatigue load.


2021 ◽  
Vol 30 (4) ◽  
pp. 2822-2831
Author(s):  
V. Shiva ◽  
Sunil Goyal ◽  
N. L. Parthasarathi ◽  
C. R. Das ◽  
R. Kannan ◽  
...  

2008 ◽  
Vol 587-588 ◽  
pp. 971-975 ◽  
Author(s):  
M. Buciumeanu ◽  
A.S. Miranda ◽  
F.S. Silva

The main objective of this work was to study the influence of the wear properties of two commercial alloys (CK45 and Al7175) on their fretting fatigue behavior. It is verified the effect of material local degradation by wear on a fatigue strength reduction factor, namely the stress concentration factor, and on the overall fretting fatigue life of these materials. The fretting fatigue phenomenon is a synergetic effect between wear and fatigue. It is dependent on both the fatigue and the wear properties of the materials. Material properties promoting an increase in wear resistance should enhance fretting fatigue life.


Author(s):  
Ming-Liang Zhu ◽  
Fu-Zhen Xuan ◽  
Zhengdong Wang

The fatigue properties of a low strength weld metal in a dissimilar welding joint in high cycle and very high cycle regimes were investigated by fully reversed axial tests in air at room temperature and 370°C. A clear duplex S-N curve existed as a result of the transition of fatigue failure mode from surface-induced failure to internal-induced failure at 370°C, while the S-N curve was continuously decreased at room temperature. A new model was successfully proposed to predict fatigue life, and interpret the crack initiation modes transition from surface inclusion to interior inclusion. It was concluded that cracks were initiated by competition among non-metallic inclusions, welding pores and discontinuous microstructures in high cycle regime. While in the very high cycle regime, non-metallic inclusions were the dominant crack initiation mechanism which depended on stress level, inclusion size as well as inclusion depth.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1818
Author(s):  
Andrea Mura ◽  
Alessando Ricci ◽  
Giancarlo Canavese

Plastics are widely used in structural components where cyclic loads may cause fatigue failure. In particular, in some applications such as in vehicles, the working temperature may change and therefore the strength of the polymeric materials. In this work, the fatigue behavior of two thermoplastic materials (ABS and PC-ABS) at different temperatures has been investigated. In particular, three temperatures have been considered representing the working condition at room temperature, at low temperature (winter conditions), and high temperature (summer conditions and/or components close to the engine). Results show that high temperature have big impact on fatigue performance, while low temperatures may also have a slight positive effect.


2014 ◽  
Vol 783-786 ◽  
pp. 713-720
Author(s):  
Paolo Matteis ◽  
Giorgio Scavino ◽  
R. Sesana ◽  
F. D’Aiuto ◽  
Donato Firrao

The automotive TWIP steels are high-Mn austenitic steels, with a relevant C content, which exhibit a promising combination of strength and toughness, arising from the ductile austenitic structure, which is strengthened by C, and from the TWIP (TWinning Induced Plasticity) effect. The microstructure of the low-alloy Q&P steels consists of martensite and austenite and is obtained by the Quenching and Partitioning (Q&P) heat treatment, which consists of: austenitizing; quenching to the Tqtemperature, comprised between Msand Mf; soaking at the Tppartitioning temperature (Tpbeing equal to or slightly higher than Tq) to allow carbon to diffuse from martensite to austenite; and quenching to room temperature. The fatigue behavior of these steels is examined both in the as-fabricated condition and after pre-straining and welding operations, which are representative of the cold forming and assembling operations performed to fabricate the car-bodies. Moreover, the microscopic fracture mechanisms are assessed by means of fractographic examinations.


Sign in / Sign up

Export Citation Format

Share Document