In Vivo Behavior of Calcium Phosphate Glasses with Controlled Solubility

Author(s):  
M. Navarro ◽  
E.S. Sanzana ◽  
Josep A. Planell ◽  
M.P. Ginebra ◽  
P.A. Torres
2005 ◽  
Vol 284-286 ◽  
pp. 893-896 ◽  
Author(s):  
Melba Navarro ◽  
E.S. Sanzana ◽  
Josep A. Planell ◽  
M.P. Ginebra ◽  
P.A. Torres

Resorbable calcium phosphate glasses offer interesting solutions in the biomedical field, as bone cavity fillers, drug delivery systems, biodegradable reinforcing phase in the case of composites for bone fixation devices and tissue engineering scaffolds. In this work, two different glass formulations in the systems 44.5CaO-44.5P2O5-(11-X)Na2O-XTiO2 (X=0or 5) have been elaborated. It is known that the incorporation or TiO2 into the vitreous system reduces considerably the solubility of the glasses. To study the material solubility effect on the in vivo response, glass particles of the two formulations were implanted in rabbits. Results showed that both glasses elicited a similar biological response and good biocompatibility. The percentage of new bone formation in the glasses was comparable to that obtained for the autologous bone (control) after 12 weeks of implantation. The materials showed to have an osteoconductive potential. Finally, this study showed that in spite of the solubility difference of the studied glasses, there were no significant differences in the in vivo response.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2159
Author(s):  
Giovanna Iezzi ◽  
Antonio Scarano ◽  
Luca Valbonetti ◽  
Serena Mazzoni ◽  
Michele Furlani ◽  
...  

Maxillary sinus augmentation is often necessary prior to implantology procedure, in particular in cases of atrophic posterior maxilla. In this context, bone substitute biomaterials made of biphasic calcium phosphates, produced by three-dimensional additive manufacturing were shown to be highly biocompatible with an efficient osteoconductivity, especially when combined with cell-based tissue engineering. Thus, in the present research, osteoinduction and osteoconduction properties of biphasic calcium-phosphate constructs made by direct rapid prototyping and engineered with ovine-derived amniotic epithelial cells or amniotic fluid cells were evaluated. More in details, this preclinical study was performed using adult sheep targeted to receive scaffold alone (CTR), oAFSMC, or oAEC engineered constructs. The grafted sinuses were explanted at 90 days and a cross-linked experimental approach based on Synchrotron Radiation microCT and histology analysis was performed on the complete set of samples. The study, performed taking into account the distance from native surrounding bone, demonstrated that no significant differences occurred in bone regeneration between oAEC-, oAFMSC-cultured, and Ctr samples and that there was a predominant action of the osteoconduction versus the stem cells osteo-induction. Indeed, it was proven that the newly formed bone amount and distribution decreased from the side of contact scaffold/native bone toward the bulk of the scaffold itself, with almost constant values of morphometric descriptors in volumes more than 1 mm from the border.


2020 ◽  
Vol 61 (6) ◽  
pp. 177-187
Author(s):  
Till Kämmerer ◽  
Tony Lesmeister ◽  
Victor Palarie ◽  
Eik Schiegnitz ◽  
Andrea Schröter ◽  
...  

Introduction: We aimed to compare implant osseointegration with calcium phosphate (CaP) surfaces and rough subtractive-treated sandblasted/acid etched surfaces (SA) in an in vivo minipig mandible model. Materials and Methods: A total of 36 cylindrical press-fit implants with two different surfaces (CaP, n = 18; SA, n = 18) were inserted bilaterally into the mandible of 9 adult female minipigs. After 2, 4, and 8 weeks, we analyzed the cortical bone-to-implant contact (cBIC; %) and area coverage of bone-to-implant contact within representative bone chambers (aBIC; %). Results: After 2 weeks, CaP implants showed no significant increase in cBIC and aBIC compared to SA (cBIC: mean 38 ± 5 vs. 16 ± 11%; aBIC: mean 21 ± 1 vs. 6 ± 9%). Two CaP implants failed to achieve osseointegration. After 4 weeks, no statistical difference between CaP and SA was seen for cBIC (mean 54 ± 15 vs. 43 ± 16%) and aBIC (mean 43 ± 28 vs. 32 ± 6). However, we excluded two implants in each group due to failure of osseointegration. After 8 weeks, we observed no significant intergroup differences (cBIC: 18 ± 9 vs. 18 ± 20%; aBIC: 13 ± 8 vs. 16 ± 9%). Again, three CaP implants and two SA implants had to be excluded due to failure of osseointegration. Conclusion: Due to multiple implant losses, we cannot recommend the oral mandibular minipig in vivo model for future endosseous implant research. Considering the higher rate of osseointegration failure, CaP coatings may provide an alternative to common subtractive implant surface modifications in the early phase post-insertion.


Author(s):  
Akiyoshi Shimatani ◽  
Hiromitsu Toyoda ◽  
Kumi Orita ◽  
Yuta Ibara ◽  
Yoshiyuki Yokogawa ◽  
...  

AbstractThis study investigated whether mixing low viscosity alginic acid with calcium phosphate cement (CPC) causes interconnected porosity in the CPC and enhances bone replacement by improving the biological interactions. Furthermore, we hypothesized that low viscosity alginic acid would shorten the setting time of CPC and improve its strength. CPC samples were prepared with 0, 5, 10, and 20% low viscosity alginic acid. After immersion in acetate buffer, possible porosification in CPC was monitored in vitro using scanning electron microscopy (SEM), and the setting times and compressive strengths were measured. In vivo study was conducted by placing CPC in a hole created on the femur of New Zealand white rabbit. Microcomputed tomography and histological examination were performed 6 weeks after implantation. SEM images confirmed that alginic acid enhanced the porosity of CPC compared to the control, and the setting time and compressive strength also improved. When incorporating a maximum amount of alginic acid, the new bone mass was significantly higher than the control group (P = 0.0153). These biological responses are promising for the translation of these biomaterials and their commercialization for clinic applications.


2021 ◽  
Vol 22 (9) ◽  
pp. 4706
Author(s):  
Shun-Yi Jian ◽  
Salim Levent Aktug ◽  
Hsuan-Ti Huang ◽  
Cheng-Jung Ho ◽  
Sung-Yen Lin ◽  
...  

Micro arc oxidation (MAO) is a prominent surface treatment to form bioceramic coating layers with beneficial physical, chemical, and biological properties on the metal substrates for biomaterial applications. In this study, MAO treatment has been performed to modify the surface characteristics of AZ31 Mg alloy to enhance the biocompatibility and corrosion resistance for implant applications by using an electrolytic mixture of Ca3(PO4)2 and C10H16N2O8 (EDTA) in the solutions. For this purpose, the calcium phosphate (Ca-P) containing thin film was successfully fabricated on the surface of the implant material. After in-vivo implantation into the rabbit bone for four weeks, the apparent growth of soft tissues and bone healing effects have been documented. The morphology, microstructure, chemical composition, and phase structures of the coating were identified by SEM, XPS, and XRD. The corrosion resistance of the coating was analyzed by polarization and salt spray test. The coatings consist of Ca-P compounds continuously have proliferation activity and show better corrosion resistance and lower roughness in comparison to mere MAO coated AZ31. The corrosion current density decreased to approximately 2.81 × 10−7 A/cm2 and roughness was reduced to 0.622 μm. Thus, based on the results, it was anticipated that the development of degradable materials and implants would be feasible using this method. This study aims to fabricate MAO coatings for orthopedic magnesium implants that can enhance bioactivity, biocompatibility, and prevent additional surgery and implant-related infections to be used in clinical applications.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Liviu Duta

The aim of this review is to present the state-of-the art achievements reported in the last two decades in the field of pulsed laser deposition (PLD) of biocompatible calcium phosphate (CaP)-based coatings for medical implants, with an emphasis on their in vivo biological performances. There are studies in the dedicated literature on the in vivo testing of CaP-based coatings (especially hydroxyapatite, HA) synthesized by many physical vapor deposition methods, but only a few of them addressed the PLD technique. Therefore, a brief description of the PLD technique, along with some information on the currently used substrates for the synthesis of CaP-based structures, and a short presentation of the advantages of using various animal and human implant models will be provided. For an in-depth in vivo assessment of both synthetic and biological-derived CaP-based PLD coatings, a special attention will be dedicated to the results obtained by standardized and micro-radiographies, (micro) computed tomography and histomorphometry, tomodensitometry, histology, scanning and transmission electron microscopies, and mechanical testing. One main specific result of the in vivo analyzed studies is related to the demonstrated superior osseointegration characteristics of the metallic (generally Ti) implants functionalized with CaP-based coatings when compared to simple (control) Ti ones, which are considered as the “gold standard” for implantological applications. Thus, all such important in vivo outcomes were gathered, compiled and thoroughly discussed both to clearly understand the current status of this research domain, and to be able to advance perspectives of these synthetic and biological-derived CaP coatings for future clinical applications.


2018 ◽  
Vol 782 ◽  
pp. 47-52
Author(s):  
Patrícia Suemi Sato ◽  
Hirotaka Maeda ◽  
Akiko Obata ◽  
Toshihiro Kasuga

60CaO-30P2O5-(10 ̶ x)Nb2O5-xTiO2 (x = 0 ~ 10, mol%) glasses were prepared in order to obtain biomaterials with high chemical durability and therapeutic ions releasability. Dissolution test of these glasses using Tris buffer solution showed the controlled release of niobate ions from Nb2O5-containing glasses and the formation of calcium titanate in some of them. These behavior might induce positive effects for bone regeneration.


2007 ◽  
Vol 330-332 ◽  
pp. 1091-1094
Author(s):  
H. Kim ◽  
M. Park ◽  
Su Young Lee ◽  
Kang Yong Lee ◽  
Hyun Min Kim ◽  
...  

Demineralized bone matrix (DBM)-calcium phosphate cement (CPC) composites were subjected to cellular test of osteogenic potentials and implantation in animal model. The expression of osteogenic marker gene from mouse preosteoblast cell line MC3T3-E1 adhered to the DBM-CPC composite was much higher than plain CPC. In addition, the DBM-CPC composite implanted nude mice revealed osteoinduction between the implanted composite and adjacent tissues, whereas the plain CPC induced osteoconduction.


Sign in / Sign up

Export Citation Format

Share Document