Some Thoughts and/or Questions about Activation Energy and Pre-Exponential Factor

Author(s):  
Jean Philibert
Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Anil Kumar Varma ◽  
Prasenjit Mondal

The present study was conducted to investigate the physicochemical properties and pyrolysis kinetics of sugarcane bagasse (SB). The physiochemical properties of SB were determined to examine its potential for pyrolysis. The physiochemical properties such as proximate analysis, ultimate analysis, heating values, lignocellulosic composition, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) of SB were investigated. The pyrolysis experiments were conducted in a nonisothermal thermogravimetric analyzer (TGA) to understand the thermal degradation behavior of SB. The activation energy (Ea) of SB pyrolysis was calculated by model-free Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) methods. Average values of activation energy determined through KAS and OFW methods are found as 91.64 kJ/mol and 104.43 kJ/mol, respectively. Variation in the activation energy with degree of conversion was observed, which shows that pyrolysis is a complex process composed of several reactions. Coats–Redfern method was used to calculate the pre-exponential factor and reaction order. Conversion of SB due to heat treatment computed by using the kinetic parameters is found to be in good agreement with the experimental conversion data, and the maximum error limit between the experimental and predicted conversions is 8.5% for 5 °C/min, 6.0% for 10 °C/min, and 11.6% for 20 °C/min. The current investigation proves the suitability of SB as a potential feedstock for pyrolysis.


2010 ◽  
Vol 297-301 ◽  
pp. 1301-1305
Author(s):  
Anatoly Yakovlevich Fishman ◽  
Tatiana Eugenievna Kurennykh ◽  
Vladimir Borisovich Vykhodets ◽  
V.B. Vykhodets

Isotope exchange of oxygen 18О2 with the boundary of nanograins of oxide LaMnO3+ obtained by the method of shock-wave loading was investigated in the temperature range of 400 – 500 °C. It was established that the temperature dependence of the isotope exchange rate is described by the Arrhenius expression, the activation energy and the pre-exponential factor being 1.67 eV and 1.8∙102 cm/s, respectively. Comparison with literature data has shown that for oxide LaMnO3+, a significant difference in activation energies and pre-exponential factors is observed for the isotope exchange rate with a ‘defect-free’ surface and the nanograin boundary. In case of the boundary, these parameters were higher: the activation energy about two times, and the pre-exponential factor, by almost 7 orders of magnitude.


2019 ◽  
Vol 97 (11) ◽  
pp. 795-804 ◽  
Author(s):  
Dong Xiang ◽  
Weihua Zhu

The density functional tight-binding molecular dynamics approach was used to study the mechanisms and kinetics of initial pyrolysis and combustion reactions of isolated and multi-molecular FOX-7. Based on the thermal cleavage of bridge bonds, the pyrolysis process of FOX-7 can be divided into three stages. However, the combustion process can be divided into five decomposition stages, which is much more complex than the pyrolysis reactions. The vibrations in the mean temperature contain nodes signifying the formation of new products and thereby the transitions between the various stages in the pyrolysis and combustion processes. Activation energy and pre-exponential factor for the pyrolysis and combustion reactions of FOX-7 were obtained from the kinetic analysis. It is found that the activation energy of its pyrolysis and combustion reactions are very low, making both take place fast. Our simulations provide the first atomic-level look at the full dynamics of the complicated pyrolysis and combustion process of FOX-7.


2010 ◽  
Vol 8 (2) ◽  
pp. 219-225
Author(s):  
Yoeswono Yoeswono ◽  
Triyono Triyono ◽  
Iqmal Tahir

A study on palm oil transesterification to evaluate the effect of some parameters in the reaction on the reaction kinetics has been carried out. Transesterification was started by preparing potassium methoxide from potassium hydroxide and methanol and then mixed it with the palm oil. An aliquot was taken at certain time interval during transesterification and poured into test tube filled with distilled water to stop the reaction immediately. The oil phase that separated from the glycerol phase by centrifugation was analyzed by 1H-NMR spectrometer to determine the percentage of methyl ester conversion. Temperature and catalyst concentration were varied in order to determine the reaction rate constants, activation energies, pre-exponential factors, and effective collisions. The results showed that palm oil transesterification in methanol with 0.5 and 1 % w/w KOH/palm oil catalyst concentration appeared to follow pseudo-first order reaction. The rate constants increase with temperature. After 13 min of reaction, More methyl esters were formed using KOH 1 % than using 0.5 % w/w KOH/palm oil catalyst concentration. The activation energy (Ea) and pre-exponential factor (A) for reaction using 1 % w/w KOH was lower than those using 0.5 % w/w KOH.   Keywords: palm oil, transesterification, catalyst, first order kinetics, activation energy, pre-exponential factor


2001 ◽  
Vol 36 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Julian M. Dust ◽  
Christopher S. Warren

Abstract The kinetics of the alkaline rearrangement of O,O-dimethyl-(2,2,2-trichloro-1- hydroxyethyl)phosphonate, (trichlorfon, 1), the active insecticidal component in such formulations as Dylox, was followed at 25±0.5°C by high pressure liquid chromatography (UV-vis detector, 210 nm). The rearrangement product, O,Odimethyl- O-(2,2-dichloroethenyl)phosphate (dichlorovos, 2), which is a more potent biocide than trichlorfon, undergoes further reaction, and the kinetics, consequently, cannot be treated by a standard pseudo-first-order plot. A two-point van't Hoff (initial rates) method was used to obtain pseudo-first-order rate constants (kѱ) at 25, 35 and 45°C: 2.6 × 10-6, 7.4 × 10-6 and 2.5 × 10-5 s-1, respectively. Arrhenius treatment of this data gave an activation energy (Ea) of 88 kJ·mol-1 with a pre-exponential factor (A) of 5.5 × 109 s-1. Kinetic trials at pH 8.0 using phosphate and tris buffer systems show no buffer catalysis in this reaction and indicate that the rearrangement is subject to specific base catalysis. Estimates are reported for pseudo-first-order half-lives for trichlorfon at pH 8.0 for environmental conditions in aqueous systems in the Corner Brook region of western Newfoundland, part of the site of a recent trichlorfon aerial spray program.


REAKTOR ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 16
Author(s):  
Takdir Syarif ◽  
H Sulistyo ◽  
Wahyudi B Sediawan ◽  
B Budhijanto

Abstract Coal is a solid fuel that can be converted into syngas through gasification process. To obtain optimum gasification process design and operation, in-depth understanding of the influential parameters is required. This study aims to investigate the effect of temperature on the gasification process and to obtain its kinetics parameters. The study was carried out in a tubular reactor equipped with a heater and a condenser. Steam was used as gasifying agent, while CaO was employed as a CO2 adsorbent. The charcoal from coal was subjected to gasification at temperatures of 600°C, 700°C, and 800°C. The ratio of charcoal and CaO was 1:1. The gasification process lasted for 60 minutes with gas sample was taken every 15 minutes for composition analysis. The results showed that a temperature increase of 100°C caused a proportional increase of conversion of about 75% higher. The value of activation energy (Ea) and exponential factor (ko) were 46.645kJ/mole and 328.3894/min, respectively. For mass transfer parameters, values of activation energy for surface diffusion (Es) and surface diffusivity factor (as) were 81.126 kJ/mole and 0.138/min, respectively. Keywords: gasification; mathematical model; Pattukku coal char; steam; Thin Reaction Zone Model


2012 ◽  
Vol 182-183 ◽  
pp. 1575-1580 ◽  
Author(s):  
Juan Wang ◽  
Da Bin Liu ◽  
Xin Li Zhou

The certain nitrate ester explosive has been tested by TG at the heating rates of 10, 15, 20, 25K•min-1. Basing on the TG experiment results the thermal decomposition activation energy has been calculated by the methods of Ozawa, KAS and iteration. And the thermal decomposition mechanism function of the explosive with 38 kinds of dynamic function was deduced by the method of integration. The results show that the thermal decomposition mechanism of the nitrate ester is chemical reaction mechanism. The thermal decomposition kinetic parameters such as average activation energy Ea and pre-exponential factor A are 133.23×103 J•mol-1 and 3.191×107 s-1 respectively.


2018 ◽  
Vol 5 (12) ◽  
pp. 181091 ◽  
Author(s):  
Qingwei Xu ◽  
Kaili Xu ◽  
Xiwen Yao ◽  
Jishuo Li ◽  
Li Li

Sand casting, currently the most popular approach to the casting production, has wide adaptability and low cost. The thermal decomposition characteristics of foundry sand for cast iron were determined for the first time in this study. Thermogravimetry was monitored by simultaneous thermal analyser to find that there was no obvious oxidation or combustion reaction in the foundry sand; the thermal decomposition degree increased as the heating rate increased. There was an obvious endothermic peak at about 846 K due to the transition of quartz from β to α phase. A novel technique was established to calculate the starting temperature of volatile emission in determining the volatile release parameter of foundry sand for cast iron. Foundry sand does not readily evaporate because its volatile content is only about 2.68 wt% and its main components have high-temperature stability. The thermal decomposition kinetics parameters of foundry sand, namely activation energy and pre-exponential factor, were obtained under kinetics theory. The activation energy of foundry sand for cast iron was small, mainly due to the wide temperature range of thermal decomposition in the foundry sand.


Sign in / Sign up

Export Citation Format

Share Document