scholarly journals Preparation of Latent Heat Materials Used in Asphalt Pavement and Theirs’ Controlling Temperature Performance

2012 ◽  
Vol 5 ◽  
pp. 322-327 ◽  
Author(s):  
Xin Bian ◽  
Yi Qiu Tan ◽  
Jian Fu Lv ◽  
Li Yan Shan

In order to solve the rutting diseases of asphalt concrete pavement, latent heat materials for asphalt pavement were prepared and its controlling temperature performance was studied. Phase change materials (PCM), which were fitted to thermal environment of road were selected, phase change asphalt, diatomite powder and pottery sand granular composite phase change materials (CPCM) were prepared by three kinds of import modes. The CPCM were chosen by comparing the performance of above mentioned materials. Latent heat asphalt mixture (LHAM) was made by replacing mineral powder and fine aggregate with CPCM. Its controlling temperature ability was tested by temperature monitor system. The results show that, comparing to asphalt mixture, LHAM can reduce the temperature to 8-10°C. Therefore, the LHAM has a good effect on adjusting the road temperature.

2018 ◽  
Vol 3 (2) ◽  
pp. 171
Author(s):  
Intan Kumalasari ◽  
Madzlan Napiah ◽  
Muslich H. Sutanto

Phase Change Material (later to be referred as PCM) has been successfully utilized in some areas. PCM has emerged as one of the materials for pavement temperature reducing due to its latent heat. Some research has been done regarding this topic. The objective of this paper is to review the development of PCM in asphalt pavement. The review has shown that organic PCM appears as the favourite PCM in asphalt concrete studies. Choice of porous material depends on method of incorporation. Reduction of temperature in PCM-asphalt mixture compared to conventional one is undoubtable. However, the mechanical performance of PCM-asphalt mixture need to be explored.


2014 ◽  
Vol 608-609 ◽  
pp. 1020-1024
Author(s):  
Jing Xu

The fiber is a reinforced material which has relatively light texture, high strength, is durable and wear-resistant, and widely used in the mixture of asphalt pavement. Adding different types of fibers in the construction, has a good effect in preventing cracks in the road, the performance of the road will also enhance. After the appropriate amount of fiber added to the asphalt mixture, fiber molecules will continuously and uniformly spread out, this time it will increase the anti-destructive of mixture, and will play an important role in protecting the road, preventing the road fracture. Related practices abroad show that adding fiber in asphalt mixture, every performance of the mixture will increase in different degrees. The diameter and density of different types of fibers will be different, of course, the reinforcing effect are not the same. This article describes application of a synthetic fibre in asphalt mixture, which is polyacrylonitrile fiber.


Author(s):  
J. Martínez-Gómez ◽  
E. Urresta ◽  
D. Gaona ◽  
G. Guerrón

Esta investigación tiene como objetivo seleccionar un material de cambio de fase (PCM) que cumplen mejor la solución del almacenamiento de energía térmica entre 200-400 ° C y reducir el costo de producción. El uso de métodos multicriterios de toma de decisiones (MCMD) para la evaluación fueron proporcionales implementados como COPRAS-G, TOPSIS y VIKOR. La ponderación de los criterios se realizó por el método AHP (proceso analítico jerárquico) y los métodos de entropía. La correlación de los resultados entre los tres métodos de clasificación ha sido desarrollada por el coeficiente de correlación de Spearman. Los resultados ilustran el mejor y la segundo mejor opción para los tres MCDM fueron NaOH y KNO3. Además, tenía valores de correlación de Spearman entre los métodos excede de 0.714.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3821
Author(s):  
Kassianne Tofani ◽  
Saeed Tiari

Latent heat thermal energy storage systems (LHTES) are useful for solar energy storage and many other applications, but there is an issue with phase change materials (PCMs) having low thermal conductivity. This can be enhanced with fins, metal foam, heat pipes, multiple PCMs, and nanoparticles (NPs). This paper reviews nano-enhanced PCM (NePCM) alone and with additional enhancements. Low, middle, and high temperature PCM are classified, and the achievements and limitations of works are assessed. The review is categorized based upon enhancements: solely NPs, NPs and fins, NPs and heat pipes, NPs with highly conductive porous materials, NPs and multiple PCMs, and nano-encapsulated PCMs. Both experimental and numerical methods are considered, focusing on how well NPs enhanced the system. Generally, NPs have been proven to enhance PCM, with some types more effective than others. Middle and high temperatures are lacking compared to low temperature, as well as combined enhancement studies. Al2O3, copper, and carbon are some of the most studied NP materials, and paraffin PCM is the most common by far. Some studies found NPs to be insignificant in comparison to other enhancements, but many others found them to be beneficial. This article also suggests future work for NePCM and LHTES systems.


Author(s):  
Yuran Shi ◽  
Mihael Gerkman ◽  
Qianfeng Qiu ◽  
Shuren Zhang ◽  
Grace G. D. Han

We report the design of photo-responsive organic phase change materials that can absorb filtered solar radiation to store both latent heat and photon energy via simultaneous phase transition and photo-isomerization....


2011 ◽  
Vol 194-196 ◽  
pp. 1632-1638
Author(s):  
Hong Liang Deng ◽  
Xiao Yin Fu ◽  
Wen Xue Gao ◽  
Ting Ting Ni ◽  
Kai Jiang Chen

The methods of controlling Highway semi-rigid base asphalt pavement cracks and other diseases are always hot fields of road engineering and academic circles. The existing methods are on some degree efficient on delaying the formation and extension of cracks, but the effect is limited with different methods and various mechanisms of preventing cracks. Base on force analysis of pavement, this article presents a new technology of crack controlling which uses intelligent composite materials interlayer. By adding a stress absorbing layer between the asphalt surface layers or the semi-rigid base layers with low modulus, good toughness, self-adaptability and self-control ability, the intelligent composite materials interlayer has a good effect on controlling cracks which has been proved by the theoretical calculations and experimental analysis. As a result, the intelligent composite materials interlayer could efficiently prevent and delay the formation and extension of cracks, the safety and comfort of highway could be improved significantly while the cost of construction and maintenance decreasing. And the service level and social image of the road could also be improved effectively. This research has important academic and application value.


Sign in / Sign up

Export Citation Format

Share Document