On Saw-Tooth Chip Formation in High Speed Cutting GH4169

2007 ◽  
Vol 10-12 ◽  
pp. 359-363 ◽  
Author(s):  
Dong Jin Zhang ◽  
Gang Liu ◽  
X. Sun ◽  
Ming Chen

The nickel-based superalloy GH4169 is a typical difficult-to-cut material, but it has been used in a good many kinds of aeronautical key structures because of its high yield stress and anti-fatigue performance at the temperature below 650°C. In this paper, finite element method (FEM) was introduced to study the saw-tooth chip forming process in detail when machining nickel-based superalloy GH4169. By the way of Lagrangian visco-elastic plastic approach, adiabatic shear band (ASB) was simulated in high speed machining condition by general commercial finite element code, and the mechanism of the adiabatic shearing phenomenon at primary shear zone was analyzed with the help of finite element analysis (FEA). The comprehensive comparisons of saw-tooth chip morphology under a wide range of cutting speed were also presented.

2012 ◽  
Vol 433-440 ◽  
pp. 1044-1051
Author(s):  
Jian Dong Jiang ◽  
Willem Hoogmoed ◽  
Guo Xing Tao ◽  
Jie Gao ◽  
Xian Zhang

A scarifier mechanism with rotary tillage and anti-rotary grubbing is proposed for inducing the power of tillage in hardens soil. MAT147 material modal is amended by experimental method and soil high-speed cutting finite element modal is build through SPH method, further, the tools parameter of proposed mechanism and soil cutting speed are studied by FEA numerical simulation through orthogonal experiments method. Finally, the result shows that the proposed mechanism with proper structural parameters and work speeds can reduce the requirement of power of tillage and increase the working efficiency of small agricultural machinery.


Author(s):  
Zengqiang Wang ◽  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Kunyang Lin ◽  
...  

Abstract High speed cutting (HSC) technology has the characteristics of high material removal rates and high machining precision. In order to study the relationships between chip morphology and machining surface characteristic in high speed cutting of superalloy Inconel718. High-speed orthogonal cutting experiment are carried out by used a high speed cutting device based on split Hopkinson pressure bar (SHPB). The specimen surfaces and collected chips were then detected with optical microscope, scanning electron microscope and three-dimensional surface profile measuring instrument. The results show that within the experimental parameters (cutting speed from 8–16m/s, depth of cut 0.1–0.5mm), the obtained chips are sawtooth chips and periodic micro-ripple appear on the machined surface. With the cutting speed increases, machining surface roughness is decreases from 1.4 to 0.99μm, and the amplitude of periodic ripples also decreases. With the cutting depth increases, the machining surface roughness increases from 0.96 to 5.12μm and surface topography becomes worse. With the increase of cutting speed and depth of cut, the chips are transform from continues sawtooth to sawtooth fragment. By comparing the frequency of surface ripples and sawtooth chips, it is found that they are highly consistent.


2011 ◽  
Vol 188 ◽  
pp. 216-219 ◽  
Author(s):  
M.H. Wang ◽  
Zhong Hai Liu ◽  
Hu Jun Wang

In order to improve machined surface quality and reduce the deformation, the residual stress involved in cutting titanium alloy was studied under different cutting speed and cutting depth by finite element simulation method. The results indicate that the increase of cutting speed and cutting depth are helpful to the surface residual compressive stress generating. However the increase of cutting speed also leads to the increase of surface residual tensile stress, the effect degree is relatively small. It is required to select higher cutting speed and smaller cutting depth to improve the surface stress state and reduce the unexpected distortion.


2011 ◽  
Vol 110-116 ◽  
pp. 1706-1710
Author(s):  
Selvam Rajiv ◽  
Karibeeran Shanmuga Sundaram ◽  
Pablo Pasquale

Electromagnetic forming (EMF) is a high energy rate forming (HERF) process. It is a high speed forming process using a pulsed magnetic field to form work pieces made of metals such as copper or aluminum alloys with high electrical conductivity. The work piece to be deformed will be located within the effective area of the tool coil so that the resulting type of stress during the forming process is determined by the type of coil used and its arrangement as related to the component. Tubular or structural components can be narrowed by means of compression coils or widened by means of expansion coils, where as sheet metal can be deformed by flat coils. In this work, the experimental investigation and simulation of electromagnetic compression forming of aluminum alloy tubes is studied. The aim of the paper was to verify the results from Finite element methods with experimental data. Experiments were conducted on Tubes of outer diameter 40 mm and wall thickness of 2 mm with a nominal tensile strength of 214 MPa. The tube was compressed using a 4 turn helical actuator discharge that can be energied up to 20 kJ. A field shaper made of aluminum was used. A Maximum reduction of 15.85% in diameters were measured. The same problem was simulated in ANSYS using static coupled electromagnetic analysis. The results of the Simulation showed good correlation with experimental results.


2014 ◽  
Vol 800-801 ◽  
pp. 113-118
Author(s):  
Sheng Lei Xiao ◽  
Xian Li Liu ◽  
Yu Wang ◽  
Kai Li

This paper analyzed the serrated chip formation process and mechanism in high-speed milling of nickel-based superalloy GH706. Firstly, analyzed two theories of serrated chip formation: cyclical fracture theory and adiabatic shear theory. Secondly, used the simulation of chip formation in high-speed milling of GH706 process, and concluded that the two major theories have achieved dialectical unity when machining for such difficult machining materials. Finally experiments for serrated chip, when cutting speed exceeded 200/min, serrated chips became more obvious. Research has shown that for nickel-based superalloy, adiabatic shear instability of the unstable thermoplastic in the first deformation zoon become the leader of formation of serrated chip, followed as the speed increases, fracture aggravate the degree of serrated chip.


2006 ◽  
Vol 532-533 ◽  
pp. 845-848
Author(s):  
Yu Wang ◽  
Fu Gang Yan ◽  
Jing Shu Hu ◽  
Tao Chen ◽  
Zhen Chang ◽  
...  

In this study, hard turning GCr15 bearing steel with high cutting speed is experimental investigated the influence of the CB7015WH insert with chamfer edge and Safe-Lock and the CB7015 insert with a combination of hone radius and a chamfer edge on cutting forces and surface roughness of machined surface. Experimental results show that the cutting forces of the chamfer edge and Safe-Lock is smaller than that of the combination of hone radius and a chamfer edge. Moreover, surface roughness of machined surface with the CB7015WH insert is better. A coupled thermo-mechanical 2D finite element model with general finite element analysis software Deform 2D.8.1 is developed for the influence of two kinds of inserts on cutting forces and effective stress. The simulation results are compared with experimental data and found to be in good agreement.


2010 ◽  
Vol 29-32 ◽  
pp. 1838-1843 ◽  
Author(s):  
Chun Zheng Duan ◽  
Hai Yang Yu ◽  
Yu Jun Cai ◽  
Yuan Yuan Li

As an advanced manufacturing technology which has been developed rapidly in recent years, high speed machining is widely applied in many industries. The chip formation during high speed machining is a complicated material deformation and removing process. In research area of high speed machining, the prediction of chip morphology is a hot and difficult topic. A finite element method based on the software ABAOUS which involves Johnson-Cook material model and fracture criterion was used to simulate the serrated chip morphology and cutting force during high speed cutting of AISI 1045 hardened steel. The serrated chip morphology and cutting force were observed and measured by high speed cutting experiment of AISI 1045 hardened steel. The effects of rake angle on cutting force, sawtooth degree and space between sawteeth were discussed. The investigation indicates that the simulation results are consistent with the experiments and this finite element simulation method presented can be used to predict the chip morphology and cutting force accurately during high speed cutting of hardened steel.


2021 ◽  
Vol 113 (9-10) ◽  
pp. 2883-2894
Author(s):  
Qihang Shi ◽  
Yongzhi Pan ◽  
Xiuli Fu ◽  
Bin Zhou ◽  
Zewen Zhang

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2170 ◽  
Author(s):  
Meng Liu ◽  
Zesheng Ji ◽  
Rui Fan ◽  
Xingguo Wang

The casting magnesium alloy AZ91D cannot be extruded at room temperature. This paper presents a process for extruding internal threads using AZ91D heated by electromagnetic induction. The feasibility of the process is verified by finite element simulation and experiments. Using DEFORM-3D to simulate the process of extruding a M12 × 1.25 mm threaded hole by electromagnetic induction-assisted heating, the equivalent stress-strain and material flow law in the process of thread deformation was analyzed and verified by experiments. Three parameters—hole diameter, machine speed and heating temperature—were considered to study the influence of different process conditions on the forming torque. The results show that a heating temperature above 523 K can improve the plasticity of AZ91D. The hole diameter has an important influence on the forming torque. The forming process is not suitable for high-speed machining. The surface metal of the thread formed by this process has a strong deformation layer, which can improve the strength and hardness of the thread.


Sign in / Sign up

Export Citation Format

Share Document