Measurement on Temperature Distribution of Metal Powder Stream in Laser Fabricating

2011 ◽  
Vol 101-102 ◽  
pp. 994-997 ◽  
Author(s):  
Jian Bo Lei ◽  
Zhen Wang ◽  
Yun Shan Wang

In order to study temperature distribution of metal powder stream in laser fabricating, its thermal radiation in visible region was detected by CCD. Based on Planck’s radiation law, the relation between molten powder temperature and its visible thermal radiation could be set up. The thermal radiation image signal of powder stream was transformed to digital signal which was used to analyzing its temperature distribution. It was shown that crosswise dimension of molten powder was about 2.5mm in diameter at the distance of 5mm from power nozzle. The powder out from powder nozzle was heated rapidly by laser. Temperature of powder in central axis regions was the highest which was nearly 2000K at the power of 1100w. The temperature gradient of powder at the edge of laser stream was greatly. The measurement results could be used to optimize the design of powder nozzle and processing parameters of laser fabricating.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3732
Author(s):  
Krzysztof Górecki ◽  
Przemysław Ptak ◽  
Tomasz Torzewicz ◽  
Marcin Janicki

This paper is devoted to the analysis of the influence of thermal pads on electric, optical, and thermal parameters of power LEDs. Measurements of parameters, such as thermal resistance, optical efficiency, and optical power, were performed for selected types of power LEDs operating with a thermal pad and without it at different values of the diode forward current and temperature of the cold plate. First, the measurement set-up used in the paper is described in detail. Then, the measurement results obtained for both considered manners of power LED assembly are compared. Some characteristics that illustrate the influence of forward current and temperature of the cold plate on electric, thermal, and optical properties of the tested devices are presented and discussed. It is shown that the use of the thermal pad makes it possible to achieve more advantageous values of operating parameters of the considered semiconductor devices at lower values of their junction temperature, which guarantees an increase in their lifetime.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia Wang ◽  
Fabian Nitschke ◽  
Maziar Gholami Korzani ◽  
Thomas Kohl

Abstract Temperature logs have important applications in the geothermal industry such as the estimation of the static formation temperature (SFT) and the characterization of fluid loss from a borehole. However, the temperature distribution of the wellbore relies on various factors such as wellbore flow conditions, fluid losses, well layout, heat transfer mechanics within the fluid as well as between the wellbore and the surrounding rock formation, etc. In this context, the numerical approach presented in this paper is applied to investigate the influencing parameters/uncertainties in the interpretation of borehole logging data. To this end, synthetic temperature logs representing different well operation conditions were numerically generated using our newly developed wellbore simulator. Our models account for several complex operation scenarios resulting from the requirements of high-enthalpy wells where different flow conditions, such as mud injection with- and without fluid loss and shut-in, occur in the drill string and the annulus. The simulation results reveal that free convective heat transfer plays an important role in the earlier evolution of the shut-in-time temperature; high accuracy SFT estimation is only possible when long-term shut-in measurements are used. Two other simulation scenarios for a well under injection conditions show that applying simple temperature correction methods on the non-shut-in temperature data could lead to large errors for SFT estimation even at very low injection flow rates. Furthermore, the magnitude of the temperature gradient increase depends on the flow rate, the percentage of fluid loss and the lateral heat transfer between the fluid and the rock formation. As indicated by this study, under low fluid losses (< 30%) or relatively higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on the temperature gradient increase can be ignored. These results provide insights on the key factors influencing the well temperature distribution, which are important for the choice of the drilling data to estimate SFT and the design of the inverse modeling scheme in future studies to determine an accurate SFT profile for the high-enthalpy geothermal environment.


1997 ◽  
Vol 15 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Takayasu SATO ◽  
Akira OHKUBO ◽  
Takayoshi OHJI ◽  
Yoshinori HIRATA

2014 ◽  
Vol 627 ◽  
pp. 153-157
Author(s):  
Nawadee Srisiriwat ◽  
Chananchai Wutthithanyawat

The temperature distribution of hot air flow in heating zone of a rectangular duct has been investigated for drying application. The experimental set-up consists of a heater and a fan to generate the hot air flow in the range of temperature from 40 to 100°C and the range of air velocity between 1.20 and 1.57 m/s. An increase of the heater power supply increases the hot air temperature in the heating zone while an increase of air velocity forced by fan decreases the initial temperature at the same power supply provided to generate the hot air flow. The temperature distribution shows that the hot air temperature after transferring through air duct decreases with an increase of the length of the rectangular duct. These results are very important for the air flow temperature and velocity control strategy to apply for heating zone design in the drying process.


2018 ◽  
Vol 1 ◽  
pp. 27
Author(s):  
Leah Nyangasi ◽  
Dickson Andala ◽  
Charles Onindo ◽  
Alphonse Wanyonyi ◽  
Josphine Chepngetich

Background: Electrospinning is a technique for producing nanofibers, useful in many fields of nanotechnology. The size and morphology of the nanofibers obtained depends on the polymer solution properties, the parameters of the equipment and the conditions of the surrounding. In almost all reported electrospinning set ups, a pump ,which regulates the flow of the polymer solution, has been included as one of the requirements. In this study, the effects of solution concentration, viscosity, voltage and the distance from the tip of the syringe to the aluminum collector on the morphology and diameters of poly(methyl methacrylate)(PMMA) fibers were investigated, using a pump-free electrospinning set up. Methods: Varied PMMA concentration (50 -120 mg/mL), voltage (10-18 kV) and distance (5 – 18 cm) of electrospinning were studied and the optimum electrospinning conditions identified.  PMMA/ titanium isopropoxide solution of ratio 1:2 was prepared, electrospun at optimized conditions (15 kV, 18 cm, Dichloromethane/Dimethylformamide 60:40) and the fibers obtained analyzed using a scanning electron microscope. Results: Solutions of PMMA whose concentrations were less than 50 mg/mL, produced beads on fibers, whereas those at ~ 100 mg/mL formed the best bead-free fibers of diameter 350±50 nm. The results showed a direct dependence of fiber diameter on the solution viscosity. Fibers of larger diameters were obtained when the distance from the tip of the syringe to the aluminum collector and voltage were increased but at higher distances (>18 kV) fewer fibers were collected. When the voltage was steadily increased, the fibers broadened and the diameters were non-uniform due to splaying and splitting. Increasing the distance between the pipette-tip and the collector from 10 to 18 cm resulted in reduced electric field which in turn yielded fewer fibers. Conclusions: The results obtained in a pump free set-up were comparable to those eletrospun in the presence of a pump.


1965 ◽  
Vol 87 (1) ◽  
pp. 117-130 ◽  
Author(s):  
R. D. Zerkle ◽  
J. Edward Sunderland

The transient, one-dimensional temperature distribution is determined for a slab, insulated on one face, and subjected to thermal radiation at the other face. The slab is initially at a uniform temperature and is assumed to be homogeneous, isotropic, and opaque; the physical properties are assumed to be independent of temperature. Transient temperature distributions for both heating and cooling situations are obtained by means of a thermal-electrical analog computer. A diode limiter circuit is used to simulate the nonlinear radiant heat flux. The transient temperature distributions are presented in a dimensionless, graphical form for a wide range of variables. Approximate analytical solutions are also given which complement and extend the solution charts over ranges of parameters not covered in the charts.


Author(s):  
Yoichi Utanohara ◽  
Michio Murase ◽  
Akihiro Masui ◽  
Ryo Inomata ◽  
Yuji Kamiya

The structural integrity of the containment vessel (CV) for a pressurized water reactor (PWR) plant under a loss-of-coolant accident is evaluated by a safety analysis code that uses the average temperature of gas phase in the CV during reactor operation as an initial condition. Since the estimation of the average temperature by measurement is difficult, this paper addressed the numerical simulation for the temperature distribution in the CV of an operating PWR plant. The simulation considered heat generation of the equipment, the ventilation and air conditioning systems (VAC), heat transfer to the structure, and heat release to the CV exterior based on the design values of the PWR plant. The temperature increased with a rise in height within the CV and the flow field transformed from forced convection to natural convection. Compared with the measured temperature data in the actual PWR plant, predicted temperatures in the lower regions agreed well with the measured values. The temperature differences became larger above the fourth floor, and the temperature inside the steam generator (SG) loop chamber on the fourth floor was most strongly underestimated, −16.2  K due to the large temperature gradient around the heat release equipment. Nevertheless, the predicted temperature distribution represented a qualitative tendency, low at the bottom of the CV and increases with a rise in height within the CV. The total volume-averaged temperature was nearly equal to the average gas phase temperature. To improve the predictive performance, parameter studies regarding heat from the equipment and the reconsideration of the numerical model that can be applicable to large temperature gradient around the equipment are needed.


Sign in / Sign up

Export Citation Format

Share Document