Application of LDV in Vibration Analysis of Satellite Solar Panel

2011 ◽  
Vol 105-107 ◽  
pp. 143-146
Author(s):  
Ting Ting Zhao ◽  
Ming Jian Wang ◽  
Jian Ping Wu ◽  
Yun Feng Song

Satellite solar panel bears with crucial responsibility in supplying energy while satellite orbits the moon. Through analyzing the vibration mode of solar panel, the structure’s natural frequency and inherent vibration vector can be obtained, which is of vital importance to structure dynamic modification, structure optimization design and fault diagnosis.This article summarizes the experimental results and analysis of solar panel under vibration with the aid of LDV. Through binary channel fast Fourier Transform (FFT), combined with modal analysis theories and software analysis system, a modal model of solar panel is built. Such an modal model provides a basis for the determination of the physical and structural parameters in the solar panel design of a satellite and provides an analysis method for the reliability validation of the design and the operating reliability of the satellite.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2014 ◽  
Vol 548-549 ◽  
pp. 383-388
Author(s):  
Zhi Wei Chen ◽  
Zhe Cui ◽  
Yi Jin Fu ◽  
Wen Ping Cui ◽  
Li Juan Dong ◽  
...  

Parametric finite element model for a commonly used telescopic boom structure of a certain type of truck-mounted crane has been established. Static analysis of the conventional design configuration was performed first. And then an optimization process has been carried out to minimize the total weight of the telescopic structures. The design variables include the geometric shape parameters of the cross-sections and the integrated structural parameters of the telescopic boom. The constraints include the maximum allowable equivalent stresses and the flexure displacements at the tip of the assembled boom structure in both the vertical direction and the circumferential direction of the rotating plane. Compared with the conventional design, the optimization design has achieved a significant weight reduction of up to 24.3%.


2013 ◽  
Vol 397-400 ◽  
pp. 451-456
Author(s):  
Qing Chao Yang ◽  
Li Hua Yang ◽  
Yan Ping Chen ◽  
Hao Kai Lai

According to the characteristics of the quasi zero stiffness (QZS) system, a dynamics approximation model is established. The effect of excitation force amplitude, frequency and stiffness on the dynamic characteristics of the system is studied by continuation algorithm. The global bifurcation diagram with a wide range of parameters is achieved by using Poincaré mapping method. Results show that when the exciting force amplitude increases to a certain extent, the system will come into multi-cycle and chaos motion state. When exciting force frequency is lower, the system dynamic behavior is complicated, which is helpful for the engineering optimization design.


2019 ◽  
Vol 7 (2) ◽  
pp. 22-32
Author(s):  
Anita Shukla ◽  
◽  
Ankit Jain ◽  

Present work focuses on need of automation in farming by using IOT technology. Automation of farming envisages monitoring and controlling of various parameters which could be helpful in increasing productivity. The proposed system provides a technological solution to the various problems like, maintenance of water requirements, humidity level, maintenance of proper temperature, and proper availability of light for sophisticated plants, fire alert and to keep a check on unwanted entry in the farming lands including timely and sufficient supply of electricity. This hardware provides an effective and efficient solution to the defined problems in Indian farming system by using node MCU Wi-Fi module. Different sensors like humidity sensor, soil moisture sensor, PIR sensor, fire sensor, light sensor and temperature sensor have been used for monitoring and controlling of various problems technologically. In proposed system a Wi-Fi module has been used which automatically informs the farmer about the water requirement, site temperature, humidity and moisture, light, fire alert and about the unwanted occupancy or encroachment by displaying real time data which can be seen and accessed over internet using IOT technology from anywhere in the world. System is equipped with solar panel which provides power backup to the system even in the absence of power supply. We have used five different sensors on three different plants with different environmental conditions and the performances of different sensors are found to be upto the desired expectations.


2005 ◽  
Vol 04 (01) ◽  
pp. 345-355 ◽  
Author(s):  
MASAHIRO YAMANAKA ◽  
AKINOBU SHIGA

A new orbital interaction analysis system, "LUMMOX", is based on two theories of "Paired Interacting Orbital (PIO)" and "Localized Frontier Orbital (LFO)", which have been developed by Fujimoto et al. LUMMOX can readily estimate the reactivity of an interacting system A–B of various sizes with the same A by comparing with the same number of the interacting orbitals. By applying LUMMOX, we report herein the primary orbital interaction on the phosphine-palladium complexes ( PF 3 Pd , PH 3 Pd , PMe 3 Pd , PPh 3 Pd ) continuously changes from the donative to back-donative interaction.


Author(s):  
Jiajia Yan ◽  
Guanghui Zhang ◽  
Zhansheng Liu ◽  
Fan Yang

A modified Reynolds equation for bump type gas foil thrust bearing was established with consideration of the gas rarefaction coefficient. Under rarefied gas lubrication, the Knudsen number which was affected by the film thickness and pressure was introduced to the Reynolds equation. The coupled modified Reynolds and lubricating film thickness equations were solved using Newton-Raphson Iterative Method and Finite Difference Method. By calculating the load capacity for increasing rotor speeds, the lift-off speed under certain static load was obtained. Parametric studies for a series of structural parameters and assembled clearances were carried out for bearing optimization design. The results indicate that with gas rarefaction effect, the axial load capacity would be decreased, and the lift-off speed would be improved. The rarefied gas has a more remarkable impact under a lower rotating speed and a smaller foil compliance coefficient. When the assembled clearance of the thrust bearing rotor system lies in a small value, the lift-off speed increases dramatically as the assembled clearance decreases further. Therefore, the axial clearance should be controlled carefully in assembling the foil thrust bearing. It’s worth noting that the linear uniform bump foil stiffness model is not exact for large foil compliance ∼0.5, especially for lift-off speed analysis, due to ignoring the interaction between bumps and bending stiffness of the foil.


2013 ◽  
Vol 552 ◽  
pp. 44-51
Author(s):  
Chen Wei Ning ◽  
Cao Jian Zhong ◽  
Yang Hong Tao ◽  
Zhang Jian ◽  
Fan Zhe Yuan ◽  
...  

Zoom lens has been widely applied in all kinds of fields, and its cam optimization is the key to actualizing the performance of its optical design and the zooming process, while the smoothness and speediness of zooming movement must be considered for military and civilian use. With the incremental use of environmental requirements, it puts forward higher requests to the cam performance of lens. In order to guarantee that the cam has good stiffness in the case of vibration and shock environment, in the process of cam design, it not only requires curve optimal, but also needs to consider influence on the performance which is caused by reduced cam stiffness of the zoom system. A fine curve can ensure that the cam pressure angle α is smaller, and to ensure the cam follower maintains the uniform velocity and smaller acceleration in zooming process, and make the zoom system produce little impact, and whole zooming process smooth and fluent, it can reduce the zoom systems driving moment M, and can ensure the stability imaging of the zoom system. Good cam stiffness K can make the zoom lens have good stability in vibration environment, and make sure that the image quality. M and K respectively up to the pressure angle α of zoom curve and the rotation angle θ of zoom curve in cam. In the new cam design process, considering the whole influence on the performance that is caused by K and M to cam, we construct the function expressions K = f (α, θ) and M = f (α, θ), and then, build target optimization function with K and M, optimize the relationship between pressure angle α of zoom curve and rotation angle θ, looking for the optimal value for the stiffness K and the cam system driving moment M , and improve overall performance of the zoom cam .


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Laikuang Lin ◽  
Yimin Xia ◽  
Dun Wu

As a key component of tunnel boring machines (TBMs), the disc cutter ring and its structural parameters are closely related to the TBM tunneling quality. Literature review shows that investigations on optimization design methods for cutter ring structure are seriously insufficient. Therefore, in this paper, a multiobjective optimization design model of structural parameters for disc cutter rings is developed based on the complex geological conditions and the corresponding cutter ring structure design requirements. The rock breaking capability, energy consumption, load-bearing capability, wear life, and wear uniformity of disc cutter are selected as the objectives, and the geometric structure of cutter rings, ultimate load-bearing capability, and cutterhead drive performance are determined as constraints. According to the characteristics of this model, a self-adaptive multipopulation genetic algorithm (SAMPGA) is utilized to solve the optimization problem, and the Fuzzy analytical hierarchy process (FAHP) is employed to calculate weight coefficients for multiple objectives. Finally, the applicability of the proposed method is demonstrated through a case study in a TBM project. The results indicated that the rock breaking performance and service life of the disc cutter are improved after optimization by using the proposed method. The utilization of SAMPGA effectively solves the premature local convergence problems during optimization. The geological adaptability should be considered in the cutter ring structure design, which can be realized by using the proposed method based on the suitable weight coefficients.


Sign in / Sign up

Export Citation Format

Share Document