Optimal Damage Detection Sensor Placement Using PSO

2011 ◽  
Vol 110-116 ◽  
pp. 5336-5341 ◽  
Author(s):  
M. O. Abdalla ◽  
E. Al-Khawaldeh

An optimal damage detection sensor placement methodology is presented. The techniques utilize a Particle Swarm Optimization (PSO) algorithm. The proposed method is iterative in nature and it permits the use of incomplete measurements. Also, it allows diversity of damage detection algorithms to be used to generate the PSO required fitness function. However, in this work Linear Matrix Inequalities are used as the damage detection schemes. Computer simulations of a cantilevered beam will be used to demonstrate the effectiveness of the methodology.

Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Shuangxi Liu ◽  
Fengping Huang ◽  
Binbin Yan ◽  
Tong Zhang ◽  
Ruifan Liu ◽  
...  

In an effort to maximize the combat effectiveness of multimissile groups, this paper proposes an adaptive simulated annealing–particle swarm optimization (SA-PSO) algorithm to enhance the design parameters of multimissile formations based on the concept of missile cooperative engagement. Firstly, considering actual battlefield circumstances, we establish an effectiveness evaluation index system for the cooperative engagement of missile formations based on the analytic hierarchy process (AHP). In doing so, we adopt a partial triangular fuzzy number method based on authoritative assessments by experts to ascertain the weight of each index. Then, considering given constraints on missile performance, by selecting the relative distances and angles of the leader and follower missiles as formation parameters, we design a fitness function corresponding to the established index system. Finally, we introduce an adaptive capability into the traditional particle swarm optimization (PSO) algorithm and propose an adaptive SA-PSO algorithm based on the simulated annealing (SA) algorithm to calculate the optimal formation parameters. A simulation example is presented for the scenario of optimizing the formation parameters of three missiles, and comparative experiments conducted with the traditional and adaptive PSO algorithms are reported. The simulation results indicate that the proposed adaptive SA-PSO algorithm converges faster than both the traditional and adaptive PSO algorithms and can quickly and effectively solve the multimissile formation optimization problem while ensuring that the optimized formation satisfies the given performance constraints.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Kang ◽  
Junjie Li ◽  
Sheng Liu

This paper proposes a damage detection method based on combined data of static and modal tests using particle swarm optimization (PSO). To improve the performance of PSO, some immune properties such as selection, receptor editing, and vaccination are introduced into the basic PSO and an improved PSO algorithm is formed. Simulations on three benchmark functions show that the new algorithm performs better than PSO. The efficiency of the proposed damage detection method is tested on a clamped beam, and the results demonstrate that it is more efficient than PSO, differential evolution, and an adaptive real-parameter simulated annealing genetic algorithm.


2021 ◽  
Vol 11 (8) ◽  
pp. 3417
Author(s):  
Nafis Ahmed ◽  
Chaitali J. Pawase ◽  
KyungHi Chang

Collision-free distributed path planning for the swarm of unmanned aerial vehicles (UAVs) in a stochastic and dynamic environment is an emerging and challenging subject for research in the field of a communication system. Monitoring the methods and approaches for multi-UAVs with full area surveillance is needed in both military and civilian applications, in order to protect human beings and infrastructure, as well as their social security. To perform the path planning for multiple unmanned aerial vehicles, we propose a trajectory planner based on Particle Swarm Optimization (PSO) algorithm to derive a distributed full coverage optimal path planning, and a trajectory planner is developed using a dynamic fitness function. In this paper, to obtain dynamic fitness, we implemented the PSO algorithm independently in each UAV, by maximizing the fitness function and minimizing the cost function. Simulation results show that the proposed distributed path planning algorithm generates feasible optimal trajectories and update maps for the swarm of UAVs to surveil the entire area of interest.


Author(s):  
Zain Anwar Ali ◽  
Han Zhangang

This study proposes a novel hybrid strategy for formation control of a swarm of multiple unmanned aerial vehicles (UAVs). To enhance the fitness function of the formation, this research offers a three-dimensional formation control for a swarm using particle swarm optimization (PSO) with Cauchy mutant (CM) operators. We use CM operators to enhance the PSO algorithm by examining the varying fitness levels of the local and global optimal solutions for UAV formation control. We establish the terrain and the fixed-wing UAV model. Furthermore, it also models different control parameters of the UAV as well. The enhanced hybrid algorithm not only quickens the convergence rate but also improves the solution optimality. Lastly, we carry out the simulations for the multi-UAV swarm under terrain and radar threats and the simulation results prove that the hybrid method is effective and gives better fitness function.


2020 ◽  
pp. 203-203
Author(s):  
Liang Xu ◽  
Zhen-Zong He ◽  
Jun-Kui Mao ◽  
Xing-Si Han

Two kind of light scattering measurement methods, i.e. the forward light scattering measurement (FLSM) method and the angular light scattering measurement (ALSM) method, are applied to reconstruct the geometrical morphology of particle fractal aggregates. An improved Attractive and Repulsive Particle Swarm Optimization (IARPSO) algorithm is applied to reconstruct the geometrical structure of fractal aggregates. It has been confirmed to show better convergence properties than the original Particle Swarm Optimization (PSO) algorithm and the Attractive and Repulsive Particle Swarm Optimization (ARPSO) algorithm. Compared with the FLSM method, the ASLM method can obtain more accurate and robust results as the distribution of the fitness function value obtained by the ALSM method is more satisfactory. Meanwhile, the retrieval accuracy can be improved by increasing the number of measurement angles or the interval between adjacent measurement angles even when the random noises are added. All the conclusions have important guiding significance for the further study of the geometry reconstruction experiment of fractal aggregates.


2011 ◽  
Vol 383-390 ◽  
pp. 86-92
Author(s):  
Miao Wang Qian ◽  
Guo Jun Tan ◽  
Ning Ning Li ◽  
Zhong Xiang Zhao

For the problem that manual adjustment of the parameters of controller in sensorless control system costs too much time, manpower and always can not get a good result, a new method based on improved particle swarm optimization algorithm is proposed to optimize the parameters. The improved algorithm is based on the standard particle swarm optimization with the simulated annealing algorithm and chaotic search brought in. The speed of motor is estimated by the extend Kalman filter. The error between measured speed and estimated speed of the permanent magnet synchronous motor rotor is used as the fitness function in order that the parameters in the covariance matrix is adjusted.The result of simulation indicates that high estimation precision can be got and the motor represents steadily with few of ripple of the actual speed.With this method, the time of adjustment is reduced and manpower is saved. In addition, the validity of the method is proved in experiment with dSPACE.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Maneesha Gupta ◽  
Richa Yadav

Second and third order digital integrators (DIs) have been optimized first using Particle Swarm Optimization (PSO) with minimized error fitness function obtained by registering mean, median, and standard deviation values in different random iterations. Later indirect discretization using Continued Fraction Expansion (CFE) has been used to ascertain a better fitting of proposed integer order optimized DIs into their corresponding fractional counterparts by utilizing their refined properties, now restored in them due to PSO algorithm. Simulation results for the comparisons of the frequency responses of proposed 2nd and 3rd order optimized DIs and proposed discretized mathematical models of half integrators based on them, with their respective existing operators, have been presented. Proposed integer order PSO optimized integrators as well as fractional order integrators (FOIs) have been observed to outperform the existing recently published operators in their respective domains reasonably well in complete range of Nyquist frequency.


2021 ◽  
Vol 11 (11) ◽  
pp. 5144
Author(s):  
Xiao-Lin Li ◽  
Roger Serra ◽  
Julien Olivier

In the past few decades, vibration-based structural damage detection (SDD) has attracted widespread attention. Using the response data of engineering structures, the researchers have developed many methods for damage localization and quantification. Adopting meta-heuristic algorithms, in which particle swarm optimization (PSO) is the most widely used, is a popular approach. Various PSO variants have also been proposed for improving its performance in SDD, and they are generally based on the Global topology. However, in addition to the Global topology, other topologies are also developed in the related literature to enhance the performance of the PSO algorithm. The effects of PSO topologies depend significantly on the studied problems. Therefore, in this article, we conduct a performance investigation of eight PSO topologies in SDD. The success rate and mean iterations that are obtained from the numerical simulations are considered as the evaluation indexes. Furthermore, the average rank and Bonferroni-Dunn’s test are further utilized to perform the statistic analysis. From these analysis results, the Four Clusters are shown to be the more favorable PSO topologies in SDD.


2013 ◽  
Vol 303-306 ◽  
pp. 1888-1891
Author(s):  
Yi Zhang ◽  
Ke Wen Xia ◽  
Gen Gu

In order to solve the problems in the optimization of filter parameters, such as large amounts of calculation and the complicated mathematical hypotheses, an approach to optimize filter parameters is presented based on the Hybrid Particle swarm optimization (HPSO) algorithm, which includes the establishing of filter model, setting up the fitness-function and optimizing filter parameters by HPSO algorithm. The application example shows that the optimization method improves the design accuracy and saves calculation, and HPSO algorithm is superior to PSO algorithm in optimization of filter parameters.


Sign in / Sign up

Export Citation Format

Share Document