Study on Optimization Proportioning Experiment and its Hydration Mechanism of Composite Cementing Material

2011 ◽  
Vol 121-126 ◽  
pp. 418-422
Author(s):  
Jin Xiao Liu ◽  
Zeng De Yin ◽  
Wen Bin Sun

This article aims at the accelerating characteristic of coal filling material. We scientifically made a series of proportion on composite-cementing material through uniform design with Portland cement, sulpho-aluminate cement and gypsums. After having testing the capability of this, we found that some certain composite-cementing material strength has been improved, both early and later strength. Furthermore, we also continually analyzed the hydration products and microstructure of composite-cementing material, then determined that early hydration products were mostly ettringites and later were C-S-H-centered and CH-centered gel.

2021 ◽  
Vol 1036 ◽  
pp. 240-246
Author(s):  
Jin Tang ◽  
Su Hua Ma ◽  
Wei Feng Li ◽  
Hui Yang ◽  
Xiao Dong Shen

The use of calcined clay and limestone as supplementary cementitious materials, can have a certain influence on the hydration of Portland cement. This paper reviewed the influence of limestone and calcined clay and the mixture of limestone and calcined clay on the hydration of cement. Both limestone and calcined clay accelerate the hydration reaction in the early hydration age and enhance the properties of cement. Limestone reacts with C3A to form carboaluminate, which indirectly stabilized the presence of ettringite, while calcined clay consumed portlandite to form C-(A)-S-H gel, additional hydration products promote the densification of pore structure and increase the mechanical properties. The synergistic effect of calcined clay and limestone stabilize the existence of ettringite and stimulate the further formation of carboaluminate, as well as the C-(A)-S-H gel, contributed to a dense microstructure.


2011 ◽  
Vol 675-677 ◽  
pp. 701-704
Author(s):  
Peng Liu ◽  
Zhi Wu Yu ◽  
Ling Kun Chen ◽  
Zhu Ding

Phosphoaluminate cement (PAC) is a kind of new cementitious material which has many special properties compared to Portland cement (PC). PAC sets quickly and develops early-high strength. In order to investigate the hydration mechanism, the hydration products and microstructure of PAC were studied with x-ray diffraction (XRD), electron scanning microscope (SEM) and electrochemical impedance spectroscopy (EIS). Heat evolution of PAC was also measured. The results show that the hydration mechanism of PAC is different from Portland cement, which is caused by the special minerals including CxP, CA(P), phase L, and so on. The main hydration products of PAC are calcium phosphorus aluminates hydrate (C-A-P-H), calcium phosphate hydrate (C-P-H), aluminates hydrate (C-A-H), the corresponding hydration microcrystal as well as gels. Also, there is no calcium hydroxide produced during hydration. The hydration procedure of PAC is divided into four stages which are dissolution and induction, acceleration, deceleration, stabilization.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jinxiao Liu ◽  
Wenxin Li ◽  
Feng Zhang ◽  
Xinguo Zhang ◽  
Lianjun Chen ◽  
...  

The low early strength of materials for paste filling in mines caused by low early strength of composite cementing material has been a severe issue. In this study, the effects of sulphoaluminate cement and gypsum on strengths of composite cementing material were investigated experimentally by employing the constrained formulation uniform design. With the content of the sulphoaluminate cement below 14% and the content of the gypsum below 16%, the compressive strengths of composite cementing materials increased, especially early strength. However, the initial and final setting time does not meet the engineering requirements in this case. Optimization tests of composite additives demonstrated that H2BO3(0.3%) + Na2SO4(0.1%) and H2BO3(0.3%) + NaNO2(0.1%) were ideal setting retarding and early strengthening composite additives as they can both reduce the initial and final setting time and enhance compressive strengths of composite cementing material. Investigations by XRD and SEM revealed that the hydration products of composite cementing material were dominated by AFt (ettringite) at the early stage and by C-S-H (hydrated calcium silicate) gel + CH (calcium hydroxide) gel at the middle and late stages. The hydration products of ratio-optimized composite cementing material do not restrain each other due to the generation sequence. Instead, they grew interactively and were coupled, thus facilitating the growth of the hardened body. This study can provide references for optimization of composite cementing material for paste filling in coal mines.


2014 ◽  
Vol 576 ◽  
pp. 57-62 ◽  
Author(s):  
Jun Ping Deng ◽  
Xiao Liang Wang ◽  
Yi Ping Guo

Magnesium slag is a kind of industrial waste during the silicothermic process for magnesium reduction which has potential hydration activity. By adding 20% to 50% of magnesium slag into Portland cement, the influence principle of the additive amount of magnesium slag on the pozzolanic activity is investigated through performance testing and hydration products analysis. During the early period of hydration process, the strength of pozzolanic effectiveness ratio weakens with the increasing additive amount of magnesium slag, while during the later period of hydration process with the additive amount of magnesium slag less than 40%, the strength of pozzolanic effectiveness ratio increases with increasing additive amount of magnesium slag. The activity index of magnesium slag increases with the increase of period and additive amount, and the strength brought by hydration of magnesium slag is a key source of the strength improvement of Portland cement with magnesium slag.


2012 ◽  
Vol 174-177 ◽  
pp. 384-389 ◽  
Author(s):  
Xin Guo Zhang ◽  
Ning Jiang ◽  
Heng Wang ◽  
Yang Yang Li

Based on present situation that coal mining under buildings, water bodies and railways, and solid wastes mainly including coal waste, fly ash in coal mine of our country, optimization proportioning of paste filling material and hydration reaction mechanism is systematicaly researched combining with project practice of paste filling in Daizhuang Coal Mine, Zibo Mining Group. The result shows that: Proportioning design P10 can be used as the optimal proportion results, the rate of cementing material is that the proportion: fly ash: coal waste is 1:4:6, quantity concentration is 74%; Coal waste paste XRD diffraction patterns of different instar shows that its hydration products at different instar stage are mainly gelation of CH, Aft and C-S-H; Relative content of each material in hydration products is different at different instar stage; With scanning electron microscope a certin ettringite is producted after coal waste paste hydrated 8h, and content of C-S-H gelation and CH gelation is increased gradually; Hydration process of portland cement is speed up and the strength of paste is enhanced.


2009 ◽  
Vol 79-82 ◽  
pp. 95-98 ◽  
Author(s):  
Ming Zhang ◽  
Zhu Ding ◽  
Feng Xing ◽  
Peng Liu

An electrodeless resistivity measurement system developed recently can provide a reliable method for monitoring the hydration process of cement-based materials continuously and accurately. Phosphoaluminate cement (PAC) sets quickly and develops high early strength. In order to understand the mechanism, the hydration products and microstructure formation of PAC in early age need to be studied. In the study, early hydration process of PAC with different dosage of retarder was investigated by the electrodeless resistivity equipment. According to resistivity-time curve, resistivity of freshly mixed PAC paste decreases sharply and then rises slowly, some characteristic peaks appear at different hydration stages of PAC. Heat evolution of PAC was also measured. The hydration mechanism and structure formation were studied according to these results. Depending on the dosage of retarder, the hydration process of PAC includes four stages which are dissolution, induction, acceleration and deceleration.


2012 ◽  
Vol 193-194 ◽  
pp. 384-388
Author(s):  
Hai Liang Luo ◽  
Chun Sheng Li ◽  
Yi Ting Ye ◽  
Fu Dan Chen

Based on orthogonal test with steel slag and desulfurization gypsum as main raw material, mixed appropriate amount slag and compound addition a little of activator, we explored the slag dosage, the proportion of the combined admixture activator and the desulfurization gypsum dosage impact on the performance of clinker-free cementing material, such as strength, stability, standard consistency water quantity and setting time. The results showed that the best mix proportion of cementing material with slag content 40% and activator A:activator B is equal to 2.78:2.22. We explored the structure and composition of hydration products further more by micro-analysis, such as SEM, EDS and so on. We can found that the cementing material hydration products similar with hydration products of silicate cement. The cementitious material hydration with Afm crystal content increased significantly. The Aft crystal generated in early hydration(3d) gradually transformed into Afm crystal in late hydration(28d) ,and the structure becomes more dense.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2340
Author(s):  
Feraidon F. Ataie

This research investigated the retarding impact of zinc oxide (ZnO) and borax (Na2[B4O5(OH)4]·8H2O) on hydration of Portland cement, calcium aluminate cement (CAC), and calcium sulfoaluminate cement (CSA). Heat of hydration of cement paste samples with and without ZnO and borax was used to measure the influence of ZnO and borax on the set time of these cementitious systems. It was found that both ZnO and borax can retard the set time of Portland cement systems; however, ZnO was shown to be a stronger set time retarder than borax for these systems. ZnO did not show any retarding impact on CAC and CSA systems while addition of borax in these systems prolonged the set time. It was concluded that ZnO does not poison the nucleation and/or growth of CSA and CAC hydration products. We suggest that borax retards the cement set time by suppressing the dissolution of cement phases.


Sign in / Sign up

Export Citation Format

Share Document