The Forecast for the Abrasive Wear of Metal Materials Aginst Plant Abrasive Based on the Grey Markov Model

2011 ◽  
Vol 130-134 ◽  
pp. 984-988
Author(s):  
Xiao Peng Huang ◽  
Jian Long Huang ◽  
Jing Feng Wu ◽  
Ke Ping Zhang

Metal materials wear loss against plant abrasive of different wear process was obtained by simulation test on the abrasive wear testing machine. On the basis of it, the GM (1, 1) model is established by using grey theory. Then the state of experiment data is divided using markov chain, the state transition matrix is constructed, finally the grey markovian model is established and wear prediction of metal materials against plant abrasive is gained. The results indicate that wear prediction based on the grey markovian model is more precise than the GM (1, 1), model, relative error being only 1.13%

2013 ◽  
Vol 420 ◽  
pp. 234-239
Author(s):  
Feng Yan Yang ◽  
Shi Jie Wang ◽  
Xiao Ren Lv

The wear mechanisms of different graphite contents of NBR by 45# steel under dry sliding and water lubrication were investigated. On MPV-600 computer-controlled abrasive wear testing machine, the coefficients of friction were measured continuously. Results showed that under dry sliding condition, the rubber wear loss is big, the coefficient of friction is higher, the temperature of the friction surface is rise obviously. Wear loss and friction coefficient of NBR decrease with the increase of graphite contents; With the increase of graphite contents wear loss and the friction coefficient decreases, and is mainly due to the graphite lubrication performance and increase the stiffness of the rubber contact area. At low content of graphite, adhesive wear of NBR is showed, in the high content of graphite, abrasive wear is showed. Water lubrication condition, wear surface level off, the wear loss is very small, and the lubrication and cooling effect of water makes the friction coefficient decrease. Graphite content is higher, the wear loss and coefficient of friction is smaller.


2017 ◽  
Vol 898 ◽  
pp. 1406-1413
Author(s):  
Yu Long Qi ◽  
Hai Yan Chen ◽  
Chen Yang Shu ◽  
Xuan Zhao ◽  
Li Hua Dong ◽  
...  

Soft and hard FeCrNiSi alloy coatings were obtained on 30CrMo alloy steel surface by laser cladding. The phase constitution, microstructure, frictional wear behavior and corrosion resistance of the composite coating were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), three-dimensional non-contact surface mapping, friction and wear testing machine and electrochemical workstation, separately. XRD analysis showed that the cladding layer was mainly composed of Fe-based alloy composition, accompanied by a small amount of cobalt nickel alloy. There were massive protrusions in the interface of the soft sample, and the coating was regularly dendritic. Hard sample coating lines were cluttered, and there was no bulk deposition. Under the same wear condition, the soft coating exhibited serious abrasive wear, while the hard coating had slight abrasive wear behavior. The polarization curves in 3%NaCl solution revealed that the self-corrosion potential of the soft coating was positive shifted more than that the hard coating. The soft coating has better corrosion resistance than the hard coating.


2013 ◽  
Vol 300-301 ◽  
pp. 833-836
Author(s):  
Shi Jie Wang ◽  
Hao Lin ◽  
Xiao Ren Lv

The progressing cavity pump (PCP) always works in the waxy oil well. Therefore the research on the influence of various liquid paraffin contents in crude oil on the friction and wear behaviors of the progressing cavity pump`s stator is very important for choosing the best stator rubber and developing the service life of PCP. Wear behavior of nitrile butadiene rubber (NBR) and fluororubber (FKM) was investigated at room temperature using a reciprocating friction and wear testing machine under the various paraffin contents in crude oil (0%、10%、30%、50%、100%). The wear morphology of blend was analyzed through the stereomicroscope and the wear behavior of two blends was also discussed and compared. The results show that the wear resistance of FKM is better than that of NBR under the same paraffin content in crude oil; With the increase of the paraffin content, the wear and coefficient of friction also increase. When the paraffin content in crude oil is less than 30%, the wear loss of NBR and FKM are basically the same; When the paraffin content in crude oil is more than 30%, the wear loss of NBR is far more than that of FKM.


2018 ◽  
Vol 207 ◽  
pp. 03011
Author(s):  
B Qiu ◽  
S M Xing ◽  
Q Dong ◽  
H Liu

Impact abrasive wear behavior of high chromium white iron (HCWI) produced by liquid die forging process were investigated. the wear tests were performed with the MLD-10 abrasive wear testing machine, using SiO2 abrasive and with four impact energies of 1.5 J, 2.5 J, 3.5 J and 4.5 J for 120 min. The results indicated that the cumulative volume loss of HCWI sample increases with the growth of impact energy, and exhibits best wear resistance under low impact condition. For given impact energy, the volume loss increases with the increasing of wear time, which shown an approximately liner tendency. The macro-morphologies, SEM images of worn surface and cross-sectional images of wear samples were observed by optical microscope and SEM, and the wear mechanism and characteristics were analyzed. Results shown that the wear characteristics is mainly based on the shallow ploughing and accompanied by plastic deformation under lower impact energy, while the fatigue peeling and embedded abrasive become the most significant characteristics when the impact energy is higher.


2011 ◽  
Vol 291-294 ◽  
pp. 129-132
Author(s):  
Xiao Juan Wu ◽  
Zheng Jun Liu ◽  
Guo De Li

The high-phosphorus electroless Ni–P plating was coated on the surface of stainless steel. Five parameters, which have much effect on coating quality, were chosen to optimize the high-phosphorus electroless Ni–P plating technology in L16(45) orthogonal test. By means of x-ray diffraction and scanning electron microscopy, the morphologies and phase structures of coating were analyzed. Furthermore, the mechanical properties of coating were studied by micro-hardness tester and universal friction-wear testing machine. The results reveal that the optimal technical parameters are as follows: 20 g•L-1 for NiSO4, 23 g•L-1 for NaH2PO2, 15 g•L-1 for C6H5O7Na3•2H2O, 8 g•L-1 for H2N-CH2-COOH, 10g•L-1 for CH3COONa, 7 g•L-1 for C4H6O4, with PH value of 4.6, which leads to perfect coating quality. Besides, the P content is 11.64 wt.%, i.e. a high-P coating. The micro-hardness of the coating is 550.67 HV and the wear loss, 4.7×10-3 g. The thermal shock test suggests that between coating and matrix exist a perfect cohesion, which is due to the homogenous and compact coating, with an amorphous structure, under the condition of the optimal technical parameters.


Author(s):  
A. Karthikeyan ◽  
S. Nallusamy

One of the most common problems encountered in many industrial products and its applications is wear. The purpose of this experimental research article is to analyze the wear behaviour of Al-6063 based SiC composites using pin on disc testing machine. In this present investigation there are nine different samples of Al/SiC composites with 5%, 7% and 9% volume of SiC were prepared through stir casting process. The sliding distance of 500 meter and the load 10 N were applied for wear testing of these prepared samples. From the experimental results, it was observed that the sliding velocity is greatly affects the wear rate and on increasing the sliding velocity the wear loss increases. It was also found that the wear loss decreases by increasing the amount of reinforcement element. Scanning electron microscope was used to examine the wear surfaces and found that the micro and transverse cracks, mild and severe wear occurred in the composite worn surfaces and wear structure of the composites.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Y. Zhou ◽  
J. H. Hu ◽  
B. Tan ◽  
Y. Jiang ◽  
Y. F. Tang

Summary Sealing is a technical bottleneck that affects drilling efficiency and cost in deep, difficult-to-drill formations. The spiral combination seal with active sand removal performance is a new type of seal, and the wear mechanism is not clear, resulting in no effective design. In this study, the wear properties of materials were measured by a friction-and-wear testing machine, and the measurement methods and criteria of wear loss and friction coefficient were established. The fitting function of working condition and friction coefficient was studied by fitting regression method. The law of influence of working conditions on friction coefficient and wear amount was determined. The actual wear model and evaluation criteria of wear condition were established by using wear test data and geometric relationship. The relationship among working conditions, contact stress, and wear depth is determined by numerical simulation method, and the wear mechanism of the new seal is revealed, which provides a theoretical basis for its application.


2021 ◽  
Author(s):  
Qin Zhou ◽  
Shuaishuai Li ◽  
Kai Zhang ◽  
Kun Qin ◽  
Minghao Lv ◽  
...  

Abstract Abrasive wear resulting from the microclastic rock is a common failure phenomenon in the drilling environmentthat often limits the sealing ability and the service life of seals. In this study, the friction and wear process of fluoro rubber (FKM) seals against 304 stainless steel (SS304) after one single entry of SiO2 abrasives were investigated. The influence of the changes in particle state on friction coefficient evolution, wear loss evolution, wear morphologies and wear mechanisms were discussed in detail. The results indicate that the presence of abrasive particles dispersed between the sealing interface clearly improves the friction performance of the seal pairs and deteriorates the wear performance of the metal counterpart. The movement and breakage of particles after one single entering into the sealing interface were obtained. And on this basis, the stable wear process can be divided into three stages. In addition, the main causes contributed to this change of wear mechanisms are the random movement and process of continuous breakdown of abrasive particles. Furthermore, the transition of the wear mechanism that clearly describes the wearing behavior of the seal pairs under these abrasive wear conditions was identified. The results of this study enhanced our understanding of the abrasive wear degradation of rubber seal in practical drilling applications.


Author(s):  
T M McGloughlin ◽  
A G Kavanagh

The formation and development of wear is now widely accepted as one of the major concerns in the long-term survivorship of contemporary knee prostheses in vivo. This review examines the role of surface topography, third-body debris, load, contact mechanics and material quality in the wear process. Some of the kinematic and physiological issues that need to be modelled in the development of wear testing regimes for evaluation of material combinations and geometrical combinations in total knee implant designs are considered. Wear testing procedures and some of the results from wear tests are discussed and the need to consider the impact of rolling and sliding in the study of wear in total knee components is highlighted. The dominant wear mechanisms that occur in vivo are identified and the role of these mechanisms is currently being examined experimentally at the University of Limerick wear testing machine.


Sign in / Sign up

Export Citation Format

Share Document