Model Derivation and Numerical Simulation for a Pivoted Rigid Rotor-Bearing System

2009 ◽  
Vol 15 ◽  
pp. 89-94 ◽  
Author(s):  
J.C. Gómez-Mancilla ◽  
J.A. Meda-Campaña ◽  
S.G. Torres-Cedillo ◽  
V.R. Nossov

This work addresses the obtainment of a mathematical model for a rotor-bearing system with orbital movement pivoted on a lubricated bushing. This kind of model allows the rotodynamic system to be analyzed using its angular displacement. Nonlinear dimensionless model is developed in order to present an approach capable of being used in general situations. Both numeric simulations and experimental results, which show the vibration response of the system and the angular orbits, illustrate the validity of the proposed approach.

2021 ◽  
pp. 095745652110307
Author(s):  
Hara P Mishra ◽  
Arun Jalan

This article presents the experimental and statistical methodology for localized fault analysis in the rotor-bearing system. These defects on outer race, on inner race, and on a combination of ball and outer race are considered. In this study speed, load and defects were considered as the essential process variables to understand their significance and effects on vibration response for the rotor-bearing system. Three factors at three levels were considered for experimentation, and the experiment was designed for L27 based on design of experiments (DOE) methodology. From the experiments, the vibration response results are recorded in terms of root mean square value for the analysis. Response surface methodology (RSM) is used for identifying the interaction effect of varying process parameters upon the response of vibrations by response surface plot. The rotor-bearing test setup is used for experimentation and is analyzed by using DOE. This study establishes the prediction of fault in the rotor-bearing system in combined parametric effect analysis and its influence with DOE and RSM.


Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

The vibration response of a rotor bearing system is extremely important in industries and is challenged by their highly non-linear and complex properties. This paper focuses on performance prediction using response surface method (RSM), which is essential to the design of high performance rotor bearing system. Response surface method is utilized to analysis the effects of design and operating parameters on the vibration response of a rotor-bearing system. A test rig of high speed rotor supported on rolling bearings is used. Vibration response of the healthy ball bearing and ball bearings with various faults are obtained and analyzed. Distributed defects are considered as surface waviness of the bearing components. Effects of internal radial clearance and surface waviness of the bearing components and their interaction are analyzed using design of experiment (DOE) and RSM.


1989 ◽  
Vol 111 (3) ◽  
pp. 234-240 ◽  
Author(s):  
B. Kishor ◽  
S. K. Gupta

This paper is an attempt to provide a dynamic analysis of a rigid rotor-gear pair-hydrodynamic bearing system with journal motions in the oil film space of the bearings. A mathematical model has been developed considering the kinematics of the gear pair as affected by journal motions and using a concept of an instantaneous line of action. Effects of bearing parameters on dynamic tooth loads have been studied. The load-speed environment of hydrodynamic bearings supporting the geared rotors is shown to be affected by journal motions in bearings. Results indicate that, for the given gear pair and the given static load-speed conditions, dynamic increments in gear tooth loads and bearing loads vary with bearing parameters (viz. clearances and oil viscosities).


2010 ◽  
Vol 34-35 ◽  
pp. 467-471
Author(s):  
Li Cui ◽  
Jian Rong Zheng

Rigid rotor roller bearing system displays complicated nonlinear dynamic behavior due to nonlinear Hertzian force of bearing. Nonlinear bearing forces of roller bearing and dynamic equations of rotor bearing system are established. The bifurcation and stability of the periodic motion of the system in radial clearance-rotating speed and ellipticity-rotating speed parametric domains are studied by use of continuation-shooting algorithm for periodic solutions of nonlinear non-autonomous dynamics system. Results show that the parameters of rotor bearing system should be designed carefully in order to obtain period-1 motion.


1996 ◽  
Vol 118 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Chee-Young Joh ◽  
Chong-Won Lee

The diagnostic method, which utilizes the dFRFs defined in the stationary and rotating coordinate systems, is tested with a laboratory flexible rotor-bearing system, in order to verify its effectiveness in detection of the asymmetry in shaft and the anisotropy in stator. The experimental results indicate that the dFRFs can be effectively used for the diagnosis of anisotropy and/or asymmetry in rotor systems by the investigation of two kinds of dFRF estimates using the complex input and output signals defined in the stationary and rotating coordinate systems.


1986 ◽  
Vol 108 (4) ◽  
pp. 619-623 ◽  
Author(s):  
Xuehai Li ◽  
D. L. Taylor

The study focuses on the effect of a small unidirectional load such as comes from imperfect balance between preloading on centering springs and gravitational load on squeeze film dampers. A rigid rotor-squeeze film damper system is considered, and a thorough study of the synchronous motion of the system is performed. Two perturbation solutions are developed: one for large speed and one for small speed. The perturbation solutions are shown to be in good agreement with numerical simulation and published experimental results.


2017 ◽  
Vol 87 (11) ◽  
pp. 1891-1907 ◽  
Author(s):  
Nanfei Wang ◽  
Dongxiang Jiang ◽  
Kamran Behdinan

2005 ◽  
Vol 128 (2) ◽  
pp. 252-261 ◽  
Author(s):  
A. Choudhury ◽  
N. Tandon

In the present investigation, a theoretical model has been developed to obtain the vibration response due to a localized defect in various bearing elements in a rotor-bearing system under radial load conditions. The rotor-bearing system has been modeled as a three degrees-of-freedom system. The model predicts significant components at the harmonics of characteristic defect frequency for a defect on the particular bearing element. In the case of a defect on the inner race or a rolling element, the model predicts sidebands about the peaks at defect frequencies, at multiples of shaft and cage frequencies, respectively. The model has also predicted some additional components at harmonics of shaft and cage frequencies due to a local defect on the inner race and a rolling element, respectively. The expressions for all these spectral components have also been derived. Typical numerical results for an NJ 204 bearing have been obtained and plotted. The amplitude of the component at defect frequency, for an outer race defect, is found to be much higher as compared to those due to inner race defect or a rolling element defect of the same size and under similar conditions of load and speed. The results of vibration measurements on roller bearings with simulated local defects have also been presented to experimentally validate the theoretical model proposed. It can be observed from the results that the spectral components predicted by the theoretical model find significant presence in the experimental spectra. Comparison of the normalized analytical values of the spectral components with their experimental values shows fair agreement for most of the cases considered. Probable area of the generated excitation pulses has been calculated and the effects of pulse area variation on the experimental results have been studied.


Sign in / Sign up

Export Citation Format

Share Document